Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
http://www.meetup.com/SF-Bay-ACM/events/227480571/
(see also YouTube for a recording of the presentation)
The talk will cover a brief review of neural network basics and the following types of neural network deep learning:
* autocorrelational - unsupervised learning for extracting features. He will describe how additional layers build complexity in the feature extraction.
* convolutional - how to detect shift invariant patterns in various data sources. Horizontal shift invariant detection applies to signals like speech recognition or IoT data. Horizontal and vertical shift invariance applies to images or videos, for faces or self driving cars
* discuss details of applying deep net systems for continuous or real time scoring
* reinforcement learning or Q Learning - such as learning how to play Atari video games
* continuous space word models - such as word2vec, skipgram training, NLP understanding and translation