機械学習輪講会資料

gree_tech
gree_techgree_tech
機械学習輪講会資料
Masahiro Higuchi / 樋口雅拓
● グリーグループのリミア株式会社で、LIMIA という住まい領域のメディアを
作っています。ゲーム会社ですが、最近はメディアに力を入れています。
● 機械学習のエンジニアですが、iOS, Android,JSなどもやっている何でも屋
です。4歳の娘のパパ。twitter: @mahiguch1
● https://limia.jp/
● https://arine.jp/
● https://aumo.jp/
● https://www.mine-3m.com/mine/
背景と目的: LIMIAとは? ● メディアサービス。記事一覧を表示し、タップ
すると記事詳細を閲覧できる。
● 記事詳細の最下部に別の記事への回遊導
線が付いている
● 記事一覧: k-meansでユーザを分類し、それ
ぞれの中でCTRが高い順に表示
● 記事下: トピックモデルで関連記事、協調フィ
ルタでオススメ記事を表示。
→ 教科書に書いてあるレベルは対応したため、
更に向上させるには論文調査が必要!
今月読んだ論文
社内で論文輪読会を開催し、まず次の 2つを読んで発表した。
● Personalized News Recommendation Based on Click Behavior:
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/3559
9.pdf
● k-means++: The Advantages of Careful Seeding:
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
今回は社内で行った発表と同様に、上記 2つの論文について説明します。他社さんの論文輪読会の
雰囲気を知りたいため、普段通りに行っていただけると助かります。
Personalized News Recommendation Based on
Click Behavior
introduction
推薦を実現する主要な方法として、情報フィルタリングと協調フィルタがある。
情報フィルタリングは、ユーザの興味や属性をもとに推薦を行う。
協調フィルタは、類似ユーザの行動をもとに推薦を行う。
Google Newsでは2009年以前、協調フィルタを利用していた。
情報フィルタリングと協調フィルタを混ぜて利用することで、改善が出来た
この論文では、次の3点について述べる。
* ログ集計
* ユーザ興味予測
* 協調フィルタにフィルタリングを混ぜた結果
GoogleNewsにおけるpersonalization
協調フィルタには、次の2点の問題があった。
* Cold Start
* エンターテイメントだらけになってしまう
これらの問題を解決するために、情報フィルタを利用した。
提案方式では、ユーザ興味変化に追随し、少ない情報量でも対応できる。
関連研究
推薦は一般的に情報フィルタと協調フィルタを使っている。
情報フィルタはユーザ属性を用いる手法で、ユーザ属性はユーザがアクセスした記事の属性を使っ
て求める。協調フィルタは類似ユーザ行動を使って求める。
これまでの研究では、 dislikeを特徴に使っていたが、クリックログだけを特徴として使っている
GoogleNewsには適用出来ない。
ユーザの興味は短期と長期に分けられる。
短期興味は人気のあるトピックで、頻繁に変化する。
長期興味はユーザの本質的な興味で、あまり変化しない。
従来の研究では短期長期をそれぞれ予測していたが、提案方式では短期興味から長期興味を予測
する。
ユーザ興味の時間経過による変化
ユーザ毎カテゴリー毎の月別クリック数を調べてみた。
実際のデータを使ってユーザの興味を予測してみた結果、時間が経過するにつれ誤差が大きくなっ
た。
ニュースの傾向
国別の傾向を調べてみた。
アメリカでは、大統領選挙があったとき政治のカテゴリーの CTRが増加した。
EUでは、EuroCupがあったときスポーツカテゴリーの CTRが増加した。
一般的なニューストレンドが個人の興味に与える影響
* 興味は時間が経つと変化する
* カテゴリー毎のクリック分布は、大きなニュースがあると変化する。
* 地域毎にニュースのトレンドは異なる
* ユーザの興味は、地域のニューストレンドに関係している。
ベイズを使ってユーザの興味を予測する
ユーザの興味は、「本質的なもの」と「地域のトレンド」に分類できる。
本質的なものは、性別年齢専門性などによって形成され、あまり変化しない。
地域のトレンドは頻繁に変化する。
まず、ユーザの本質的な興味を予測する。
次にこれを時系列で足し上げる。
最後に地域のトレンドを混ぜることで、ユーザの今の興味を予測する 。
本質的な興味予測
p(click | category=ci) = p(category = ci|click) p(click) / p(category = ci)
これを「ユーザ毎」と「地域全体」の 2つを取得する。
地域全体と同じ動きをしていれば短期的な興味、違う動きをしていれば本質的な興味とわかる。
# 過去分の足し上げ
これで特定の期間(1ヶ月とか)のユーザの興味が分かったので、過去分を足し上げる。
クリック数による加重平均を取る。
現在の興味を予測
地域の過去1時間のカテゴリー毎のクリック数を取得し、これを地域のトレンドとする。
合計クリック数の部分を地域のトレンドにすることで両方を混ぜたことにする???おかしくな
い???
加重平均を取っており分母が合計クリック数となっている。
合計クリック数が0だと計算できないので、 10回クリックされたものとして計算を始める。
これにより、最初は地域のトレンドが強く、クリックするに従って本質的な興味が強くなっていく。
記事推薦
記事は、推薦スコア順に並べ替える。
推薦スコアは、「上記で示した情報フィルタスコア」に「参考文献 7の協調フィルタスコア」を掛け合わ
せたものを使う。
Rec(article) = IF(article) x CF(article)
これにより、両方の良いとこどりができる。
結論
# 結果
推薦枠のCTRは30%増加したが、GoogleNewsTop全体のCTRは変わらなかった。
つまり、その他の枠からクリックを奪った形になる。
また、1日あたりの訪問回数は 14%増加した。
# まとめと今後
分析したところ、ユーザの興味は短期と長期に分けられることが分かった。
それをベイズで表現して組み込んだ結果、より良い成果を獲得できた。
枠位置補正が必要。
情報フィルタと協調フィルタを混ぜる方法を洗練させる。
ユーザ行動分析を通じて、さらに理解を深めたい。
k-means++: The Advantages of Careful Seeding
introduction
k-means++を実装することになったので、せっかくなので原典論文を読んでみた。
# Introduction
k-meansは初期値をランダムで決めるが、そこを改良して k-means++と名付けた。
# Related Work
もっと誤差が少ないものは存在するが、遅くて使い物にならなかった。
# Definitions
k-meansは誤差の二乗和の最小化を目指す。
K-means algorithm
1. クラスタ中心点をランダムに選択する。
2. 全てのデータについて、最近傍中心点 (所属するクラスタ)を決める。
3. クラスタに所属する全てのデータを中心点として再設定する。
4. (2)(3)を変化がなくなるまで繰り返す
K-means++ algorithm
k-meansの(1)の初期値選択を次のように変更する。
1a. 1つ目の中心点をランダムに選択する。
1b. 次の中心点を選択するとき、他の中心点から遠いものが選ばれ易くする。
1c. (1b)を繰り返して、必要な中心点を作る。
2-4. 標準的なk-meansと同じ
# 結果
k-meansだと稀に大きな誤差になることがあるが、 k-means++だと安定した結果を得られる。
誤差が20%減少し、速度が70%速くなった。
// kmeans++の初期値を返す。入力のnumClusterはクラスタ数、dataは分類対象データ。
// 初期値同士を遠ざけることで、局所解を防ぐと共に収束を早くする。
// SEE ALSO: http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
func seeds(numCluster uint64, data []*entityIdeaVector.Entity) ([][]float64, error) {
seeds := make([][]float64, numCluster)
e := data[rand.Intn(len(data))]
seeds[0] = e.Vector
for i := uint64(1); i < numCluster; i++ {
dist := make([]float64, len(data))
var sum float64
for k, v := range data {
_, dist[k] = nearest(seeds, v.Vector)
sum += dist[k]
}
threshold := rand.Float64() * sum
var stack float64
var dataNum int
for k, v := range dist {
stack += v
if threshold < stack {
dataNum = k
break
}
}
seeds[i] = data[dataNum].Vector
}
return seeds, nil
}
最後に
これから読みたい論文や書籍
● * Google news personalization: scalable online collaborative filtering:
https://www2007.org/papers/paper570.pdf
● * Amazon amazon-all-the-research-you-need-about-its-algorithm-and-innovation:
https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
● * Netflix The Netflix Recommender System: Algorithms, Business Value, and Innovation:
https://beta.vu.nl/nl/Images/werkstuk-fernandez_tcm235-874624.pdf
● * Gunosy Greedy Optimized Multileaving for Personalization:
https://arxiv.org/pdf/1907.08346.pdf
● * Yahoo! News Embedding-based News Recommendation for Millions of Users:
https://www.kdd.org/kdd2017/papers/view/bridging-collaborative-filtering-and-semi-supervised
-learning-a-neural-appr
● * 書籍 推薦システム―統計的機械学習の理論と実践―
https://www.kyoritsu-pub.co.jp/bookdetail/9784320124301
● * 書籍 これからの強化学習: https://www.morikita.co.jp/books/book/3034
まとめ
● 今月読んだ論文2本について説明した
● 推薦を改善することで回遊性と再訪頻度の向上を目指しており、今月から
有名論文を読み始めたところ。毎週1本読みたい。
● 一人だと遅いので、社内で論文輪読会を立ち上げた。社外にも積極的に
参加していきたい。
● システム的にはオフライン検証基盤構築が急務。
● アドバイスやご意見等ありましたら、教えて欲しい。
ご静聴、ありがとうございました!
1 of 24

Recommended

RecommendWidgetを作った話 by
RecommendWidgetを作った話RecommendWidgetを作った話
RecommendWidgetを作った話gree_tech
982 views14 slides
Firestoreを使ってメディアアプリを作ってみた by
Firestoreを使ってメディアアプリを作ってみたFirestoreを使ってメディアアプリを作ってみた
Firestoreを使ってメディアアプリを作ってみたgree_tech
1.6K views15 slides
LIMIAでのBigQuery活用事例 by
LIMIAでのBigQuery活用事例LIMIAでのBigQuery活用事例
LIMIAでのBigQuery活用事例gree_tech
4.2K views18 slides
gRPCを使ったメディアサービス by
gRPCを使ったメディアサービスgRPCを使ったメディアサービス
gRPCを使ったメディアサービスgree_tech
2.1K views17 slides
メディアアプリLIMIAにおけるプッシュ通知配信システム by
メディアアプリLIMIAにおけるプッシュ通知配信システムメディアアプリLIMIAにおけるプッシュ通知配信システム
メディアアプリLIMIAにおけるプッシュ通知配信システムgree_tech
763 views26 slides
DCL15秒の見れないサイトを3秒まで改善した話。改善継続中 by
DCL15秒の見れないサイトを3秒まで改善した話。改善継続中DCL15秒の見れないサイトを3秒まで改善した話。改善継続中
DCL15秒の見れないサイトを3秒まで改善した話。改善継続中gree_tech
765 views18 slides

More Related Content

What's hot

公式部活動技術書典部の活動紹介 by
公式部活動技術書典部の活動紹介公式部活動技術書典部の活動紹介
公式部活動技術書典部の活動紹介gree_tech
1.9K views22 slides
携帯電話時代から続くモバイルゲームとアプリの関係 by
携帯電話時代から続くモバイルゲームとアプリの関係携帯電話時代から続くモバイルゲームとアプリの関係
携帯電話時代から続くモバイルゲームとアプリの関係gree_tech
1.4K views155 slides
IoTを擬人化してみた by
IoTを擬人化してみたIoTを擬人化してみた
IoTを擬人化してみたIchiro Tsuji
3K views25 slides
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま by
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さまDaiki Hirozawa
2.6K views25 slides
IoTを擬人化してみた そして巨大化してみる by
IoTを擬人化してみた そして巨大化してみるIoTを擬人化してみた そして巨大化してみる
IoTを擬人化してみた そして巨大化してみるIchiro Tsuji
775 views49 slides
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram... by
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...Members_corp
5.6K views37 slides

What's hot(11)

公式部活動技術書典部の活動紹介 by gree_tech
公式部活動技術書典部の活動紹介公式部活動技術書典部の活動紹介
公式部活動技術書典部の活動紹介
gree_tech1.9K views
携帯電話時代から続くモバイルゲームとアプリの関係 by gree_tech
携帯電話時代から続くモバイルゲームとアプリの関係携帯電話時代から続くモバイルゲームとアプリの関係
携帯電話時代から続くモバイルゲームとアプリの関係
gree_tech1.4K views
IoTを擬人化してみた by Ichiro Tsuji
IoTを擬人化してみたIoTを擬人化してみた
IoTを擬人化してみた
Ichiro Tsuji3K views
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま by Daiki Hirozawa
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま
#インスタサミット 「アカウント運用の基礎」アライドアーキテクツ株式会社 藤田さま
Daiki Hirozawa2.6K views
IoTを擬人化してみた そして巨大化してみる by Ichiro Tsuji
IoTを擬人化してみた そして巨大化してみるIoTを擬人化してみた そして巨大化してみる
IoTを擬人化してみた そして巨大化してみる
Ichiro Tsuji775 views
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram... by Members_corp
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...
オウンドメディア × Instagram APIで出来ること ~写真共有サイト「Marunouchipix」からみるオウンドメディアでのInstagram...
Members_corp5.6K views
JAWS-UG京都をre:Bootしてみた by Ichiro Tsuji
JAWS-UG京都をre:BootしてみたJAWS-UG京都をre:Bootしてみた
JAWS-UG京都をre:Bootしてみた
Ichiro Tsuji464 views
WordPressとS3で落ちないコーポレートサイトを立ち上げよう by Ichiro Tsuji
WordPressとS3で落ちないコーポレートサイトを立ち上げようWordPressとS3で落ちないコーポレートサイトを立ち上げよう
WordPressとS3で落ちないコーポレートサイトを立ち上げよう
Ichiro Tsuji4.2K views
Trend and examples of the Augmented Reality - 2013 Summer by Etsuji Kameyama
Trend and examples of the Augmented Reality - 2013 SummerTrend and examples of the Augmented Reality - 2013 Summer
Trend and examples of the Augmented Reality - 2013 Summer
Etsuji Kameyama3.8K views
月間6アプリリリースの開発現場でのQiita:Team活用法 by Naoya Mouri
月間6アプリリリースの開発現場でのQiita:Team活用法月間6アプリリリースの開発現場でのQiita:Team活用法
月間6アプリリリースの開発現場でのQiita:Team活用法
Naoya Mouri9.1K views
How are AsakusaSatellite growing with mzp by Ryo Suetsugu
How are AsakusaSatellite growing with mzpHow are AsakusaSatellite growing with mzp
How are AsakusaSatellite growing with mzp
Ryo Suetsugu9.4K views

More from gree_tech

アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜 by
アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜
アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜gree_tech
725 views36 slides
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介 by
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介gree_tech
229 views13 slides
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表 by
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表gree_tech
1K views18 slides
アプリ起動時間高速化 ~推測するな、計測せよ~ by
アプリ起動時間高速化 ~推測するな、計測せよ~アプリ起動時間高速化 ~推測するな、計測せよ~
アプリ起動時間高速化 ~推測するな、計測せよ~gree_tech
1.9K views84 slides
長寿なゲーム事業におけるアプリビルドの効率化 by
長寿なゲーム事業におけるアプリビルドの効率化長寿なゲーム事業におけるアプリビルドの効率化
長寿なゲーム事業におけるアプリビルドの効率化gree_tech
347 views116 slides
Cloud Spanner をより便利にする運用支援ツールの紹介 by
Cloud Spanner をより便利にする運用支援ツールの紹介Cloud Spanner をより便利にする運用支援ツールの紹介
Cloud Spanner をより便利にする運用支援ツールの紹介gree_tech
683 views31 slides

More from gree_tech(20)

アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜 by gree_tech
アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜
アナザーエデンPC版リリースへの道のり 〜WFSにおけるマルチプラットフォーム対応の取り組み〜
gree_tech725 views
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介 by gree_tech
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介
GREE VR Studio Laboratory「XR-UX Devプロジェクト」の成果紹介
gree_tech229 views
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表 by gree_tech
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表
REALITYアバターを様々なメタバースで活躍させてみた - GREE VR Studio Laboratory インターン研究成果発表
gree_tech1K views
アプリ起動時間高速化 ~推測するな、計測せよ~ by gree_tech
アプリ起動時間高速化 ~推測するな、計測せよ~アプリ起動時間高速化 ~推測するな、計測せよ~
アプリ起動時間高速化 ~推測するな、計測せよ~
gree_tech1.9K views
長寿なゲーム事業におけるアプリビルドの効率化 by gree_tech
長寿なゲーム事業におけるアプリビルドの効率化長寿なゲーム事業におけるアプリビルドの効率化
長寿なゲーム事業におけるアプリビルドの効率化
gree_tech347 views
Cloud Spanner をより便利にする運用支援ツールの紹介 by gree_tech
Cloud Spanner をより便利にする運用支援ツールの紹介Cloud Spanner をより便利にする運用支援ツールの紹介
Cloud Spanner をより便利にする運用支援ツールの紹介
gree_tech683 views
WFSにおけるCloud SpannerとGKEを中心としたGCP導入事例の紹介 by gree_tech
WFSにおけるCloud SpannerとGKEを中心としたGCP導入事例の紹介WFSにおけるCloud SpannerとGKEを中心としたGCP導入事例の紹介
WFSにおけるCloud SpannerとGKEを中心としたGCP導入事例の紹介
gree_tech596 views
SINoALICE -シノアリス- Google Cloud Firestoreを用いた観戦機能の実現について by gree_tech
SINoALICE -シノアリス- Google Cloud Firestoreを用いた観戦機能の実現についてSINoALICE -シノアリス- Google Cloud Firestoreを用いた観戦機能の実現について
SINoALICE -シノアリス- Google Cloud Firestoreを用いた観戦機能の実現について
gree_tech626 views
海外展開と負荷試験 by gree_tech
海外展開と負荷試験海外展開と負荷試験
海外展開と負荷試験
gree_tech593 views
翻訳QAでのテスト自動化の取り組み by gree_tech
翻訳QAでのテスト自動化の取り組み翻訳QAでのテスト自動化の取り組み
翻訳QAでのテスト自動化の取り組み
gree_tech305 views
組み込み開発のテストとゲーム開発のテストの違い by gree_tech
組み込み開発のテストとゲーム開発のテストの違い組み込み開発のテストとゲーム開発のテストの違い
組み込み開発のテストとゲーム開発のテストの違い
gree_tech573 views
サーバーフレームワークに潜んでる脆弱性検知ツール紹介 by gree_tech
サーバーフレームワークに潜んでる脆弱性検知ツール紹介サーバーフレームワークに潜んでる脆弱性検知ツール紹介
サーバーフレームワークに潜んでる脆弱性検知ツール紹介
gree_tech209 views
データエンジニアとアナリストチーム兼務になった件について by gree_tech
データエンジニアとアナリストチーム兼務になった件についてデータエンジニアとアナリストチーム兼務になった件について
データエンジニアとアナリストチーム兼務になった件について
gree_tech308 views
シェアドサービスとしてのデータテクノロジー by gree_tech
シェアドサービスとしてのデータテクノロジーシェアドサービスとしてのデータテクノロジー
シェアドサービスとしてのデータテクノロジー
gree_tech432 views
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて- by gree_tech
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
「ドキュメント見つからない問題」をなんとかしたい - 横断検索エンジン導入の取り組みについて-
gree_tech1K views
「Atomic Design × Nuxt.js」コンポーネント毎に責務の範囲を明確にしたら幸せになった話 by gree_tech
「Atomic Design × Nuxt.js」コンポーネント毎に責務の範囲を明確にしたら幸せになった話「Atomic Design × Nuxt.js」コンポーネント毎に責務の範囲を明確にしたら幸せになった話
「Atomic Design × Nuxt.js」コンポーネント毎に責務の範囲を明確にしたら幸せになった話
gree_tech1.1K views
比較サイトの検索改善(SPA から SSR に変換) by gree_tech
比較サイトの検索改善(SPA から SSR に変換)比較サイトの検索改善(SPA から SSR に変換)
比較サイトの検索改善(SPA から SSR に変換)
gree_tech693 views
コードの自動修正によって実現する、機能開発を止めないフレームワーク移行 by gree_tech
コードの自動修正によって実現する、機能開発を止めないフレームワーク移行コードの自動修正によって実現する、機能開発を止めないフレームワーク移行
コードの自動修正によって実現する、機能開発を止めないフレームワーク移行
gree_tech2.9K views
「やんちゃ、足りてる?」〜ヤンマガWebで挑戦を続ける新入りエンジニア〜 by gree_tech
「やんちゃ、足りてる?」〜ヤンマガWebで挑戦を続ける新入りエンジニア〜「やんちゃ、足りてる?」〜ヤンマガWebで挑戦を続ける新入りエンジニア〜
「やんちゃ、足りてる?」〜ヤンマガWebで挑戦を続ける新入りエンジニア〜
gree_tech396 views
法人向けメタバースプラットフォームの開発の裏側をのぞいてみた(仮) by gree_tech
法人向けメタバースプラットフォームの開発の裏側をのぞいてみた(仮)法人向けメタバースプラットフォームの開発の裏側をのぞいてみた(仮)
法人向けメタバースプラットフォームの開発の裏側をのぞいてみた(仮)
gree_tech751 views

Recently uploaded

システム概要.pdf by
システム概要.pdfシステム概要.pdf
システム概要.pdfTaira Shimizu
36 views1 slide
how query cost affects search behavior translated in JP by
how query cost affects search behavior translated in JPhow query cost affects search behavior translated in JP
how query cost affects search behavior translated in JPTobioka Ken
9 views16 slides
SSH超入門 by
SSH超入門SSH超入門
SSH超入門Toru Miyahara
207 views21 slides
図解で理解するvetKD by
図解で理解するvetKD図解で理解するvetKD
図解で理解するvetKDryoo toku
85 views22 slides
robotics42.pptx by
robotics42.pptxrobotics42.pptx
robotics42.pptxNatsutani Minoru
188 views18 slides
onewedge_companyguide1 by
onewedge_companyguide1onewedge_companyguide1
onewedge_companyguide1ONEWEDGE1
7 views22 slides

Recently uploaded(10)

how query cost affects search behavior translated in JP by Tobioka Ken
how query cost affects search behavior translated in JPhow query cost affects search behavior translated in JP
how query cost affects search behavior translated in JP
Tobioka Ken9 views
図解で理解するvetKD by ryoo toku
図解で理解するvetKD図解で理解するvetKD
図解で理解するvetKD
ryoo toku85 views
onewedge_companyguide1 by ONEWEDGE1
onewedge_companyguide1onewedge_companyguide1
onewedge_companyguide1
ONEWEDGE17 views
AIで始めるRustプログラミング #SolDevHub by K Kinzal
AIで始めるRustプログラミング #SolDevHubAIで始めるRustプログラミング #SolDevHub
AIで始めるRustプログラミング #SolDevHub
K Kinzal21 views
3Dプリンタでロボット作るよ#1_黎明編 by Yoshihiro Shibata
3Dプリンタでロボット作るよ#1_黎明編3Dプリンタでロボット作るよ#1_黎明編
3Dプリンタでロボット作るよ#1_黎明編
Najah Matsuo Self Introduction by NajahMatsuo
Najah Matsuo Self IntroductionNajah Matsuo Self Introduction
Najah Matsuo Self Introduction
NajahMatsuo7 views

機械学習輪講会資料