Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Neutrino taquiónico

3,037 views

Published on

Pequeña descripción gráfica de la relatividad especial y de por qué un neutrino que viaje más rápido que la luz puede "llegar antes de salir" y violar el principio de causalidad.

Published in: Technology
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download Full EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download Full doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book THIS can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer THIS is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBooks .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story THIS Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money THIS the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths THIS Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • no, lo siento. Lo preparé sobre la marcha para explicárselo a un amigo.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • no si es mucha molestia, pero me gustaria saber si tienes otros trabajos asi como estos, son tan didacticos para poder explicar cosas que creo q no se encuentran asi de facill. muchas graxias nuevamente
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • de nada, si algo no esta suficientemente claro decidlo y lo corrijo o amplío
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • muchas gracias por esta explicacionn!!!! mas claro no lo puedo encontrar... espero sigas con esto....
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Neutrino taquiónico

  1. 1. ¿Es verdad que los neutrinos del CERN llegaron antes de salir?<br />Una explicación de andar por casa (sin ecuaciones!!!!)<br />By@gruizdevilla<br />
  2. 2. Si y no.<br />(Todo depende de como se mire  )<br />
  3. 3. Supongamos un observador inercial R0. (o sea, tú por ejemplo)(inercial: que no acelera ni frena)<br />Vamos a pintar dos ejes para situar sucesos, uno de desplazamiento espacial y otro temporal. <br />
  4. 4. t<br />Por aquí estamos, en el futuro y hacia atrás<br />Por aquí estamos, en el futuro y hacia adelante<br />x<br />Por aquí estamos, en el pasado y hacia atrás<br />Por aquí estamos, en el pasado y hacia adelante<br />
  5. 5. t<br />El eje t corresponde con las posiciones de un objeto que estuviese en x=0 y no se moviese.<br />x<br />El eje x corresponde con todos los sucesos simultáneos en el instante t=0<br />
  6. 6. Pintemos el recorrido de un rayo de luz.<br />
  7. 7. Para simplificar, el eje x mide la distancia en vez de en metros, en unidades equivalentes a 300.000.000m.<br />Es decir, lo que la luz recorren en un segundo.<br />
  8. 8. t<br />c<br />x<br />
  9. 9. Y ahora lo que hizo el neutrino, viajando más rápido que la luz. <br />(Para que se vea más clara la ilustración, se ha utilizado una velocidad mucho mayor a la del experimento del CERN)<br />
  10. 10. Identificamos dos sucesos:<br />s0: Salida del CERN, en el pasado<br />s1: Llegada a Gran Sasso, en el futuro<br />
  11. 11. t<br />c<br />s1 , la llegada, ocurre en el futuro y a la derecha(x positivo)<br />s1<br />x<br />s0<br />s0 , la salida, ocurre en el pasado y a la izquierda (x negativo)<br />
  12. 12. Ahora un poco de relatividad especial. <br />Poco, que son sólo dos postulados.<br />
  13. 13. Primer postulado <br />1. Principio especial de relatividad<br />Las leyes de la física son las mismas en todos los sistemas de referencia inerciales. En otras palabras, no existe un sistema inercial de referencia privilegiado, que se pueda considerar como absoluto.<br />(anda que no es democrática la física, ¿eh? todos iguales ante la ley.. de la física)<br />
  14. 14. Para ilustrarlo añadimos un nuevo sistema de referencia inercial R1 en movimiento respecto desde el primero R0. <br />O sea yo (R1), me muevo respecto de ti (R0)<br />
  15. 15. Agregamos su eje t’, es decir, la trayectoria de una partícula que no se mueva respecto de R1 (o sea, por donde me muevo yo)<br />
  16. 16. t<br />t’<br />x<br />(nada nuevo bajo el sol hasta ahora)<br />
  17. 17. Segundo postulado <br />2. Invariancia de c<br />La velocidad de la luz en el vacío es una constante universal, c, que es independiente del movimiento de la fuente de luz.<br />(de sobra conocido y demostrado desde 1887 por Michelson y Morley)<br />
  18. 18. Pintemos el rayo de luz c de nuevo<br />
  19. 19. c<br />t<br />t’<br />x<br />
  20. 20. La velocidad luz no parece ser la misma para R0 y para R1<br />
  21. 21. En R0 la luz se aleja por igual de los ejes t y x<br />En R1 se aleja más del eje x que del eje t’, es decir, parece que la luz va más lenta.<br />(esto es relatividad clásica, la de Galileo)<br />
  22. 22. Falta algo para cumplir el segundo postulado: que la velocidad de c sea la misma para todos los sistemas de referencia inerciales.<br />
  23. 23. ¿Y sí definimos un eje nuevo x’ para R1que defina los sucesos simultáneos con t’=0?<br />Este eje se debe alejar de “c” al mismo ritmo que t’, como ocurría con x y t (para que sean velocidades similares para los dos).<br />
  24. 24. Para R1 lo que ocurre a la vez o es simultáneo, resulta que pertenece tanto al pasado como al futuro de R0.<br />x’: simultáneo en el instante cero (t’=0) para R1. La mitad derecha está en el futuro de R0 y la mitad izquierda en el pasado.<br />c<br />t<br />t’<br />x’<br />B<br />x<br />A<br />Tú (R0) mides que A ocurre antes que B (usas t y x para medir).<br />Yo (R1) mido que A y B ocurren a la vez (x’ son las cosas que veo que ocurren a la vez en el instante t’=0!)<br />
  25. 25. Sacamos dos conclusiones:<br />Para que en t’ la luz se aleje al mismo ritmo que en t, el eje tiene que estar dilatado, es decir, que el tiempo avanza más despacio (lo de la paradoja de los gemelos)<br />Aparece x’. ¡¡¡Los sucesos que ocurren a la vez para un observador ocurren en momentos distintos para otro!!!!!!!!(La contracción del espacio la explicamos otro día).<br />
  26. 26. Parece un poco raro al principio, pero las cosas acaban cuadrando.<br />¿Y si hubiésemos empezado pintando R1? (Mis ejes t’ y x’ se verían perpendiculares)<br />Estaríamos en la siguiente figura, que presenta una cierta simetría con la anterior. (R0 se desplaza hacia la izquierda)<br />
  27. 27. c<br />t<br />Futuro de R1<br />t’<br />x’<br />Para R0 lo que ocurre a la vez o es simultáneo, resulta que pertenece tanto al pasado como al futuro de R1.<br />x: simultáneo en el instante cero (t=0) para R0. La mitad derecha está en el pasado de R1 y la mitad izquierda en el futuro.<br />x<br />Pasado de R1<br />
  28. 28. Volvamos al neutrino hiperlumínico<br />
  29. 29. t<br />c<br />s1 , la llegada, ocurre en el futuro y a la derecha(x positivo)<br />s1<br />x<br />s0<br />s0 , la salida, ocurre en el pasado y a la izquierda (x negativo)<br />
  30. 30. Para sacar las coordenadas es muy fácil: utilizar líneas paralelas.<br />Paralelas a x para sacar el tiempo y paralelas a t para sacar la posición.<br />
  31. 31. t<br />c<br />s1 , la llegada, ocurre en el futuro y a la derecha(x positivo)<br />s1<br />t1<br />x0<br />x1<br />x<br />t0<br />s0<br />s0 , la salida, ocurre en el pasado y a la izquierda (x negativo)<br />
  32. 32. Dos sucesos en R0<br />Salida s0: en el pasado y a la izquierda (x0,t0)<br />Llegada s1: en el futuro y a la derecha (x1,t1)<br />
  33. 33. Ahora dibujamos el sistema de referencia R1<br />
  34. 34. t<br />c<br />t’<br />x’<br />s1<br />x<br />s0<br />
  35. 35. Calculemos ahora las coordenadas de los dos sucesos en R1.<br />¿Cómo? Con paralelas a t’ y a x’.<br />
  36. 36. t<br />c<br />t’<br />x’<br />x1’<br />t0’<br />s1<br />x<br />s0<br />x0’<br />t1’<br />
  37. 37. Veamos que hemos obtenido:<br />
  38. 38. Dos sucesos en R1<br />Salida s0: en el futuro (parte de arriba de t’) y a la izquierda (x0’,t0’)<br />Llegada s1: en el pasado (parte de abajo de t’) y a la derecha (x1’,t1’)<br />
  39. 39. O sea, el efecto (la llegada) ocurre antes de la causa.<br />¡¡¡Viola, por tanto, el principio de causalidad!!!<br />
  40. 40. Si la velocidad del neutrino fuera inferior a la de la luz, esto nunca ocurriría.<br />
  41. 41. El dibujo completo:<br />
  42. 42. t<br />c<br />t’<br />x’<br />x1’<br />t0’<br />s1<br />t1<br />x0<br />x1<br />x<br />t0<br />s0<br />x0’<br />t1’<br />Sucesos s0 y s1<br />En el sistema de referencia original (t’,x’)<br />t0<0<t1<br />En el otro sistema de referencia (t’,x’)<br />t1’<0<t0’<br />
  43. 43. Epílogo<br />¿Qué puede haber pasado con el experimento?<br />
  44. 44. Una de dos:<br />
  45. 45. O hay algún fallo en el experimento que todavía no se ha encontrado (inicialmente, parece lo más probable)<br />
  46. 46. O que el experimento esté bien hecho. Entonces, citando a Sherlock Holmes: “Cuando todo aquello que es imposible ha sido eliminado, lo que quede, por muy improbable que parezca, es la verdad.”<br />
  47. 47. O sea, algo que no habíamos visto hasta ahora está pasando, algo apasionante, nuevo y raro, raro, raro… y seguro que Holmes tendrá razón de nuevo al decir: “Nada resulta más engañoso que un hecho evidente”<br />
  48. 48.
  49. 49. Más frases de Sherlock Holmes que aplicarían a este problema:<br />Datos, datos, datos… No puedo fabricar ladrillos sin arcilla.<br />Es un caso realmente muy interesante.<br />Adapta las teorías a los hechos, en vez de los hechos a las teorías.<br />Es un error capital el teorizar antes de poseer datos. Insensiblemente uno comienza a deformar los hechos para hacerlos encajar en las teorías, en lugar de encajar las teorías en los hechos.<br />Nada aclara tanto un caso como exponérselo a otra persona.<br />Nunca hago excepciones, la excepción invalida la regla.<br />Nuestras ideas deben ser tan amplias como la naturaleza si aspiran a interpretarla.<br />Comienza el juego.<br />

×