Sustainability wonders: Bicycle Clothes line Condom Library Pad Thai Lady bugs Ceiling fan & The root cellar
Why are these Unity College students so serious? <ul><li>Solving a community problem  </li></ul><ul><li>Enrolled in the En...
My first root cellar -- under the cabin in British Columbia: <ul><li>Straw-bale and adobe </li></ul><ul><li>Trap door in t...
My second root cellar experience: <ul><li>Under the Straw-Bale house </li></ul><ul><li>Bucket system with ropes </li></ul>...
My third root cellar experience: <ul><li>55 gallon barrels </li></ul><ul><li>Into a hill, insulated top and front </li></u...
Ravenwood, Maine Field stone foundation using slip-form methods <ul><li>Sandy soils </li></ul><ul><li>Inexpensive </li></u...
Frank and Libby’s Homestead <ul><li>Built along outside of house, not under </li></ul><ul><li>Concrete walls, gravel floor...
St. Lawrence Nursery <ul><li>Earth-Bermed and insulated </li></ul><ul><li>Concrete roof </li></ul><ul><li>Differential the...
Goranson’s Farm, Dresden, ME <ul><li>20’ X 60’ Root Cellar </li></ul><ul><li>Stores 70 tons of food </li></ul><ul><li>Cost...
100,000 Pounds of Potatoes 1000 Btu/ton/day Loose 10% in weight to evaporation 3” Urethane on walls 5” on ceiling
Ventilation <ul><li>Draw in nigh time air till below 45 deg. before storing crop  </li></ul><ul><li>Set differential therm...
Dry Storage
Currently designing Unity College’s Root Cellar <ul><li>12’X 8’ expandable </li></ul><ul><li>Stores 2,500 pounds </li></ul...
Root Cellar Design Stephen Belyea Maine Department of Agriculture, Food, and Rural Resources
Storage is a period of rest : <ul><li>Not too warm, not too cool. </li></ul><ul><li>Not too humid, not too dry. </li></ul>...
Vegetables Respire in Storage H2O CO2 O2 Heat Pathogens
Ideal Conditions Vary by Crop
2-3 22000 1.5-2.0 50-70 50-55 40 Squash 6-12 1000 1.0-1.5 95-100 38-45 40 Potato 6 1200 1.0-1.5 98-100 32-38 36 Cabbage 4-...
Three General Storage Conditions <ul><li>Cool and Dry  – onion and garlic </li></ul><ul><li>Cool and Humid –  carrot, beet...
Do these conditions occur naturally on a consistent basis? <ul><li>Certainly Not! </li></ul><ul><li>How can we provide the...
Factors in Effective Storage Environment Control <ul><li>Predictable storage space conditions </li></ul><ul><ul><li>Relati...
Factors in Effective Storage Environment Control <ul><li>Predictable storage space conditions: </li></ul><ul><li>Mechanica...
2-3 22000 1.5-2.0 50-70 50-55 32 Squash 6-12 1000 1.0-1.5 95-100 38-45 40 Potato 6 1200 1.0-1.5 98-100 32-38 36 Cabbage 4-...
Sizing a Storage Unit <ul><li>Assume that the bulk density is approximately 40 lbs. / cu.ft. </li></ul><ul><li>Only 75% of...
Sizing Example <ul><li>2 tons of winter squash </li></ul><ul><li>Stored in 50 # totes </li></ul><ul><li>4,000 # / 50 #/tot...
Storage Totes Footprint - Drawn to Scale In the Floor Plan
Ventilation <ul><li>Summer and early Fall – remove Field Heat and Heat of Respiration </li></ul><ul><ul><li>Usually requir...
Cooling with Outside Air <ul><li>Most economical cooling method </li></ul><ul><li>Amount of cooling air required will vary...
Shell Ventilation <ul><li>Cools inside of locker or storage room. </li></ul><ul><li>Produce relies on air circulation thro...
Shell Ventilation Example
 
2 3 4 5 1 1 – 24 hr. timer 2 – Low Limit Thermostat 3 – Inside Temperature Thermostat 4 – Outside Temperature Thermostat 5...
Commercial Air Handler
Refrigeration <ul><li>Eliminates / minimizes vagaries of outside conditions or harvest temperatures. </li></ul><ul><li>Req...
Calculating Cooling Load <ul><li>Contributors to cooling load: </li></ul><ul><ul><li>Field heat </li></ul></ul><ul><ul><li...
Cooling Load Calculations <ul><li>12 x 20 storage room with 8 ft. ceiling </li></ul><ul><li>4 in styrofoam in ceiling and ...
Cooling Load - Structure <ul><li>Q = A dt / R </li></ul><ul><li>Walls </li></ul><ul><ul><li>A = (20+20+12+12) x 8 = 512 s....
Cooling Load - Structure <ul><li>Floor  </li></ul><ul><ul><li>A = (12 x 20) = 240 s.f. </li></ul></ul><ul><li>Q = 240 x 10...
Cooling Load – Field Heat <ul><li>500 # corn @ 70F </li></ul><ul><li>Specific heat = 0.79 </li></ul><ul><li>Q = MCdT  (btu...
Cooling Load – Heat of Respiration <ul><li>Q = MK </li></ul><ul><ul><li>M = mass (tons) </li></ul></ul><ul><ul><li>K = res...
Cooling Load - Infiltration <ul><li>Q = (ho – hi) x VN / 13.5 </li></ul><ul><ul><li>ho and hi are enthalpy values for outs...
Cooling Load – Summary <ul><li>Total cooling load = structure + field heat + heat of respiration + infiltration </li></ul>...
Refrigeration Sizing <ul><li>Refrigeration sizing = calculated cooling load x Service Factor x Defrost Factor </li></ul><u...
 
Commercial Refrigeration Condensor
Air Conditioner Cool Bot Application?
Humidification
Portable Humidifier
Centrifugal Humidifier
 
Evaporative Media Humidifier
 
 
Hygrometer
Power Psychrometer
Temperature Monitoring
Electronic Thermometer
Supplemental Heat
Electric Space Heater
Other Considerations
Easy  Access
Easy Access / Easy Clean Up Well Lighted
Questions … and maybe Answers
Small Electric Space Heater
 
 
Upcoming SlideShare
Loading in …5
×

Rootcellar design, Steve Belyea & Jim Merkel

2,742 views

Published on

Published in: Education, Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,742
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Rootcellar design, Steve Belyea & Jim Merkel

  1. 1. Sustainability wonders: Bicycle Clothes line Condom Library Pad Thai Lady bugs Ceiling fan & The root cellar
  2. 2. Why are these Unity College students so serious? <ul><li>Solving a community problem </li></ul><ul><li>Enrolled in the Environmental Citizen </li></ul><ul><li>Service Learning </li></ul><ul><li>Supplying a Community Need </li></ul>
  3. 3. My first root cellar -- under the cabin in British Columbia: <ul><li>Straw-bale and adobe </li></ul><ul><li>Trap door in the kitchen </li></ul><ul><li>Worked great but got moldy </li></ul>
  4. 4. My second root cellar experience: <ul><li>Under the Straw-Bale house </li></ul><ul><li>Bucket system with ropes </li></ul><ul><li>Compact </li></ul><ul><li>Worked great, got moldy </li></ul>
  5. 5. My third root cellar experience: <ul><li>55 gallon barrels </li></ul><ul><li>Into a hill, insulated top and front </li></ul><ul><li>Worked great, taste from barrels and plywood coatings </li></ul>
  6. 6. Ravenwood, Maine Field stone foundation using slip-form methods <ul><li>Sandy soils </li></ul><ul><li>Inexpensive </li></ul><ul><li>Labor intensive </li></ul><ul><li>Insulated walls </li></ul>
  7. 7. Frank and Libby’s Homestead <ul><li>Built along outside of house, not under </li></ul><ul><li>Concrete walls, gravel floor, covered access </li></ul><ul><li>Manual ventilation, fruit and vegetables </li></ul>
  8. 8. St. Lawrence Nursery <ul><li>Earth-Bermed and insulated </li></ul><ul><li>Concrete roof </li></ul><ul><li>Differential thermostat, active ventilation </li></ul>
  9. 9. Goranson’s Farm, Dresden, ME <ul><li>20’ X 60’ Root Cellar </li></ul><ul><li>Stores 70 tons of food </li></ul><ul><li>Cost: $225K </li></ul>
  10. 10. 100,000 Pounds of Potatoes 1000 Btu/ton/day Loose 10% in weight to evaporation 3” Urethane on walls 5” on ceiling
  11. 11. Ventilation <ul><li>Draw in nigh time air till below 45 deg. before storing crop </li></ul><ul><li>Set differential thermostat at 36 inside, 50 deg. outside, in series </li></ul><ul><li>Exhaust:12” tube axial fan </li></ul><ul><li>Intake: 18” </li></ul><ul><li>Dehydrates produce (need to add humidity and loosely wrap) </li></ul><ul><li>Draws off ethylene </li></ul>
  12. 12. Dry Storage
  13. 13. Currently designing Unity College’s Root Cellar <ul><li>12’X 8’ expandable </li></ul><ul><li>Stores 2,500 pounds </li></ul><ul><li>4’ below grade </li></ul><ul><li>Concrete footing, block walls, poured ceiling </li></ul><ul><li>Active ventilation </li></ul><ul><li>Uses stackable crates and hanging shelves </li></ul>
  14. 14. Root Cellar Design Stephen Belyea Maine Department of Agriculture, Food, and Rural Resources
  15. 15. Storage is a period of rest : <ul><li>Not too warm, not too cool. </li></ul><ul><li>Not too humid, not too dry. </li></ul><ul><li>Just right! </li></ul>
  16. 16. Vegetables Respire in Storage H2O CO2 O2 Heat Pathogens
  17. 17. Ideal Conditions Vary by Crop
  18. 18. 2-3 22000 1.5-2.0 50-70 50-55 40 Squash 6-12 1000 1.0-1.5 95-100 38-45 40 Potato 6 1200 1.0-1.5 98-100 32-38 36 Cabbage 4-6 1500 1.0-1.5 98-100 32-35 40 Rutabaga 4-6 2200 0.5-1.0 90-98 32-40 48 Beet 7-9 4400 0.5-1.0 90-98 32-35 40 Carrot 3-4 1100 2.0-2.5 70-75 32-50 43 Garlic 1-8 1100 2.0-2.5 65-75 32-45 46 Onion Months Btu/ton/day cfm/cwt % deg. F #/cu.ft. Crop Time Resp. Airflow Humidity Temp. Density Heat of Rel Storage Bulk
  19. 19. Three General Storage Conditions <ul><li>Cool and Dry – onion and garlic </li></ul><ul><li>Cool and Humid – carrot, beet, cabbage, rutabaga, potato </li></ul><ul><li>Warm and Dry - squash </li></ul>
  20. 20. Do these conditions occur naturally on a consistent basis? <ul><li>Certainly Not! </li></ul><ul><li>How can we provide the storage conditions our stored crops need? </li></ul><ul><li>We need to be able to control the environment in our storages. </li></ul>
  21. 21. Factors in Effective Storage Environment Control <ul><li>Predictable storage space conditions </li></ul><ul><ul><li>Relatively air tight </li></ul></ul><ul><ul><li>Insulated </li></ul></ul><ul><ul><li>Protected from weather extremes </li></ul></ul><ul><ul><li>Not subject to water infiltration </li></ul></ul>
  22. 22. Factors in Effective Storage Environment Control <ul><li>Predictable storage space conditions: </li></ul><ul><li>Mechanicals: </li></ul><ul><ul><li>Fan </li></ul></ul><ul><ul><li>Cooler </li></ul></ul><ul><ul><li>Humidifier </li></ul></ul><ul><ul><li>Heater </li></ul></ul><ul><ul><li>Controls </li></ul></ul>
  23. 23. 2-3 22000 1.5-2.0 50-70 50-55 32 Squash 6-12 1000 1.0-1.5 95-100 38-45 40 Potato 6 1200 1.0-1.5 98-100 32-38 36 Cabbage 4-6 1500 1.0-1.5 98-100 32-35 40 Rutabaga 4-6 2200 0.5-1.0 90-98 32-40 48 Beet 7-9 4400 0.5-1.0 90-98 32-35 40 Carrot 3-4 1100 2.0-2.5 70-75 32-50 43 Garlic 1-8 1100 2.0-2.5 65-75 32-45 46 Onion Months Btu/ton/day cfm/cwt % deg. F #/cu.ft. Crop Time Resp. Airflow Humidity Temp. Density Heat of Rel. Storage Bulk
  24. 24. Sizing a Storage Unit <ul><li>Assume that the bulk density is approximately 40 lbs. / cu.ft. </li></ul><ul><li>Only 75% of floor space is usable. </li></ul><ul><li>Good air circulation. </li></ul><ul><li>Leave space for easy access to different products. </li></ul><ul><li>Shelves or pallets increase the total capacity by more efficient space utilization. </li></ul>
  25. 25. Sizing Example <ul><li>2 tons of winter squash </li></ul><ul><li>Stored in 50 # totes </li></ul><ul><li>4,000 # / 50 #/tote = 80 totes </li></ul><ul><li>Tote size 18 x 18 x 12 = 2.25 c.f. </li></ul><ul><li>4 layers high </li></ul><ul><li>Footprint = 20 totes @ 2.25 s.f. x 125% </li></ul><ul><li>= 56 s.f. of floor space </li></ul>
  26. 26. Storage Totes Footprint - Drawn to Scale In the Floor Plan
  27. 27. Ventilation <ul><li>Summer and early Fall – remove Field Heat and Heat of Respiration </li></ul><ul><ul><li>Usually requires refrigeration </li></ul></ul><ul><ul><li>Usually short term storage </li></ul></ul><ul><li>Late Fall and Winter – remove heat of respiration </li></ul><ul><li>Also have to consider heat gain through structure </li></ul>
  28. 28. Cooling with Outside Air <ul><li>Most economical cooling method </li></ul><ul><li>Amount of cooling air required will vary significantly from day to day and week to week as outside air temperatures vary and as cooling load in the storage locker changes. </li></ul><ul><li>Requires at least minimal controls </li></ul>
  29. 29. Shell Ventilation <ul><li>Cools inside of locker or storage room. </li></ul><ul><li>Produce relies on air circulation through room and around bins / bags. </li></ul><ul><li>Generally need 0.25 – 0.50 cfm / cwt of stored product. </li></ul><ul><li>Multiple fans or variable speed fans are most effective for varying conditions. </li></ul>
  30. 30. Shell Ventilation Example
  31. 32. 2 3 4 5 1 1 – 24 hr. timer 2 – Low Limit Thermostat 3 – Inside Temperature Thermostat 4 – Outside Temperature Thermostat 5 – On / Off Switch Ventilation Fan Basic Ventilation Control Panel Components
  32. 33. Commercial Air Handler
  33. 34. Refrigeration <ul><li>Eliminates / minimizes vagaries of outside conditions or harvest temperatures. </li></ul><ul><li>Requires more involved calculation of heat removal. </li></ul>
  34. 35. Calculating Cooling Load <ul><li>Contributors to cooling load: </li></ul><ul><ul><li>Field heat </li></ul></ul><ul><ul><li>Heat of respiration </li></ul></ul><ul><ul><li>Heat gain through structure </li></ul></ul><ul><ul><li>Use Excel calculator or formulas in Refrigeration Manual </li></ul></ul>
  35. 36. Cooling Load Calculations <ul><li>12 x 20 storage room with 8 ft. ceiling </li></ul><ul><li>4 in styrofoam in ceiling and walls </li></ul><ul><li>2 in. styrofoam under concrete slab </li></ul><ul><li>1 pass door 3’ x 7’ </li></ul><ul><li>Minimal traffic through door </li></ul><ul><li>Minimal lighting </li></ul><ul><li>40F inside </li></ul><ul><li>75F outside / ground temperature 50F </li></ul>
  36. 37. Cooling Load - Structure <ul><li>Q = A dt / R </li></ul><ul><li>Walls </li></ul><ul><ul><li>A = (20+20+12+12) x 8 = 512 s.f. </li></ul></ul><ul><ul><li>dT = 75F outside – 40F inside = 35F </li></ul></ul><ul><ul><li>R = 20 </li></ul></ul><ul><li>Q = 512 x 35 / 20 = 896 btu/hr. </li></ul><ul><li>Ceiling </li></ul><ul><ul><li>A = (12 x 20) = 240 s.f. </li></ul></ul><ul><li>Q = 240 x 35 / 20 = 420 btu/hr. </li></ul>
  37. 38. Cooling Load - Structure <ul><li>Floor </li></ul><ul><ul><li>A = (12 x 20) = 240 s.f. </li></ul></ul><ul><li>Q = 240 x 10 / 5 = 480 btu / hr. </li></ul><ul><li>Door </li></ul><ul><ul><li>A = (3 x 7) = 21 s.f. </li></ul></ul><ul><li>Q = (3 x 7) x 35 / 7.5 = 98 </li></ul><ul><li>Summary </li></ul><ul><ul><li>Walls + ceiling + floor + door </li></ul></ul><ul><ul><li>= 896 + 420 + 480 + 98 = 1894 btu / hr </li></ul></ul>
  38. 39. Cooling Load – Field Heat <ul><li>500 # corn @ 70F </li></ul><ul><li>Specific heat = 0.79 </li></ul><ul><li>Q = MCdT (btu/day) </li></ul><ul><ul><li>M = mass = 500 # </li></ul></ul><ul><ul><li>C = specific heat = 0.79 btu/lb.-F </li></ul></ul><ul><ul><li>dT = 24 temperature drop = 30F </li></ul></ul><ul><li>Q = 500 x 0.79 x 30 = 11,850 btu / day </li></ul><ul><li>Q = 494 btu / hr. </li></ul>
  39. 40. Cooling Load – Heat of Respiration <ul><li>Q = MK </li></ul><ul><ul><li>M = mass (tons) </li></ul></ul><ul><ul><li>K = respiratory heat production (btu/ton-day) </li></ul></ul><ul><li>Q = (500 # / 2,000 #/ton) x 20,000 </li></ul><ul><ul><li>= 0.25 x 20,000 = 5,000 btu / day </li></ul></ul><ul><ul><li>= 208 btu / hr </li></ul></ul>
  40. 41. Cooling Load - Infiltration <ul><li>Q = (ho – hi) x VN / 13.5 </li></ul><ul><ul><li>ho and hi are enthalpy values for outside and inside air (get values from Table 9). </li></ul></ul><ul><ul><li>V = volume of room = 1,920 c.f. </li></ul></ul><ul><ul><li>N = number of air changes per hour = 0.25 </li></ul></ul><ul><ul><li>13.5 = ave. specific volume of air, c.f. / lb. </li></ul></ul><ul><li>Q = (38.62-15.23) x 1,920 x 0.25 / 13.5 </li></ul><ul><ul><li>= 832 btu / hr. </li></ul></ul>
  41. 42. Cooling Load – Summary <ul><li>Total cooling load = structure + field heat + heat of respiration + infiltration </li></ul><ul><ul><li>= 1894 + 563 + 208 + 832 </li></ul></ul><ul><ul><li>= 3,497 btu / hr. </li></ul></ul>
  42. 43. Refrigeration Sizing <ul><li>Refrigeration sizing = calculated cooling load x Service Factor x Defrost Factor </li></ul><ul><ul><li>= 3,497 btu / hr. x 1.1 x 1.1 </li></ul></ul><ul><ul><li>= 4,615 btu / hr. </li></ul></ul><ul><ul><li>1 ton of refrigeration = 12,000 btu / hr. </li></ul></ul><ul><ul><li>Approx. 1 hp / ton of refrigeration </li></ul></ul>
  43. 45. Commercial Refrigeration Condensor
  44. 46. Air Conditioner Cool Bot Application?
  45. 47. Humidification
  46. 48. Portable Humidifier
  47. 49. Centrifugal Humidifier
  48. 51. Evaporative Media Humidifier
  49. 54. Hygrometer
  50. 55. Power Psychrometer
  51. 56. Temperature Monitoring
  52. 57. Electronic Thermometer
  53. 58. Supplemental Heat
  54. 59. Electric Space Heater
  55. 60. Other Considerations
  56. 61. Easy Access
  57. 62. Easy Access / Easy Clean Up Well Lighted
  58. 63. Questions … and maybe Answers
  59. 64. Small Electric Space Heater

×