Issues: What the Web Can Tell us About Human Behavior


Published on

Presented in Issues (2013), the following explores what we can learn about social human behavior by observing actions on the Web and at scale.

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Issues: What the Web Can Tell us About Human Behavior

  1. 1. What the Web Can Tell us About Human Behavior Presented by: Kristine Gloria The Tetherless World Constellation Rensselaer Polytechnic Institute, Troy, NY With thanks to the extended RPI Tetherless World Team Wednesday, July 10, 13
  2. 2. AGENDA 2 I. Background II. Tetherless World Constellation III. Current Research IV. Future Research Wednesday, July 10, 13
  3. 3. 3 • Bachelor’s in Journalism from UT - Austin • Master’s in Media Studies from UT - Austin • Worked: • Microsoft, AMD, Rambus, etc. • New America Foundation in D.C. • Texas House of Representatives - Austin, TX • U.S. Congressional Race - TX - District 38 in South in Texas • Co-founder of PolitiHacks What does this have to do with Cognitive Science? Wednesday, July 10, 13
  4. 4. 4 communication politics TECHNOLOGY motivations? behavior? design? values? Wednesday, July 10, 13
  5. 5. Why the Web? 5 Wednesday, July 10, 13
  6. 6. Why RPI? 6 • Engineering/ technical expertise • Deep knowledge of the Web’s infrastructure • Expertise in Semantic Web • Cognitive Science Department • Multidisciplinary nature gives me flexibility to firm up gaps in my knowledge • Prof. Jim Hendler • Understood / support for exploring the intersection of technology, politics, social behavior Wednesday, July 10, 13
  7. 7. Tetherless World Constellation 7 “ . .is a constellation of multidisciplinary researcherswho study the scientific and engineering principlesthat underlie the Web, to enhance the Web's reachbeyond the desktop and laptop computer, anddevelops new technologies and languages thatexpand the capabilities of the Web.” Wednesday, July 10, 13
  8. 8. 9 Future Knowledge Base communication politics cognitive & social psychology TECHNOLOGY Wednesday, July 10, 13
  9. 9. Wednesday, July 10, 13
  10. 10. Key authors Sherry  Turkle:  Department  of  Science,  Technology,  and  Society  at  MIT •Life  on  the  Screen:    Iden1ty  in  the  Age  of  the  Internet  (1997) •Simula1on  and  Its  Discontents  (2009) •Alone  Together:  Why  We  Expect  More  from  Technology  and  Less  from  Each  Other   (2011) Helen  Nissenbaum:  Media,  Culture,  and  CommunicaAon  &  Computer   Science  Director,  InformaAon  Law  InsAtute  at  NYU •“Where  Computer  Security  Meets  NaAonal  Security  “(2007) •“Embodying  Values  in  Technology:  Theory  and  PracAce”  (2008) •Privacy  in  Context:  Technology,  Policy,  and  the  Integrity  of  Social  Life  (2011)   Danny  Weitzner:  MIT  CSAIL  Decentralized  InformaAon  Group   •"DirecAng  Policy-­‐Making:  Beyond  the  Net's  Metaphor”  (1997) •"InformaAon  Accountability”(2008)   •“Foreign  Policy  of  the  Internet”  (2011) Wednesday, July 10, 13
  11. 11. Wednesday, July 10, 13
  12. 12. Current Research What  can  the  Web  tell  us  about  human  social  behavior? •How  is  social  distance[1][2]  altered  or  effected  by  computer  mediated   systems  (aka  the  Web)  in  projecAng  mental  states  onto  other  people?  •How  and  can  this  informaAon  be  used  to  develop  public  policy? [1]  Machews,  JusAn  L.,  and  Teenie  Matlock.  "Understanding  the  link  between  spaAal  distance  and  social  distance."  Social   Psychology  42.3  (2011):  185-­‐192. [2]  Bar-­‐Anan,  Yoav,  et  al.  "AutomaAc  processing  of  psychological  distance:  Evidence  from  a  Stroop  task."  Journal  of  experimental   psychology.  General136.4  (2007):  610. Wednesday, July 10, 13
  13. 13. Current Research How  does  this  phenomena  (e.g.  the  Web,  structured  data,  etc.)  change  our   quesEons  about  our  methods,  accountability,  ethics,  and  underlying  biases   in  our  research?   •What  of  arAficial  environments?   "Visual complexity produces opacity. Massive individualizing data produces beautiful, playful hairballs which show us nothing." - Bruno Latour, CHI2013 Wednesday, July 10, 13
  14. 14. Current Research InformaEon  Sharing  Online  Project  (preliminary  work) •To  explore  the  process  of  "structuraAon",  in  which  decisions  are  influenced   by  contextual  factors  (episodic)  during  trade-­‐off  decisions•ReconceptualizaAon  of  a  model  for  privacy  comparing  “face-­‐to-­‐face”  offline  communicaAon  pracAces  with  human-­‐computer  mediated    communicaAon  [1] •Understanding  trade-­‐offs:•Convenience  v.  privacy•Socio-­‐technical  (e.g.  design  of  technologies,  influence  of  public  insAtuAons,  governments  etc.)   [1]  Pierre,  J.  "Reverse  Privacy  Engineering."  ACM  Web  Science  Conference.  In  Proceedings.  (2013).   Wednesday, July 10, 13
  15. 15. Mixed Methods Approach To  begin,  we  embarked  on  a  mixed  methods  approach:   •CreaAon  and  administraAon  of  survey •Exploring  quesAons  related  to  four  key  topics  (per  literature  review): • Security,  accountability,  privacy,  &  transparency • Episodic  in  content • Both  qualitaAve  and  quanAtaAve  quesAons  were  asked Wednesday, July 10, 13
  16. 16. Sample results Wednesday, July 10, 13
  17. 17. Wednesday, July 10, 13
  18. 18. • Explores the relationships of people and semantics in the graph database • Users can visualize and analyze different types of sub-graphs Twitter Network Observatory Makani, B. & Zhang, Q. Wednesday, July 10, 13
  19. 19. Wednesday, July 10, 13
  20. 20. How it all fits together communication politics cognitive & social psychology design technologyWednesday, July 10, 13
  21. 21. QuesAons? 21 Wednesday, July 10, 13
  22. 22. Semantic Web 8 • Inclusion of semantic content in web pages • Inserting of machine-readable metadata • Giving structure to current unstructured data on the web • Resource Description Framework (RDFs) • Objective: support the interoperability of metadata Example: “Katie knows Jane Doe” Wednesday, July 10, 13
  23. 23. Katie | knows | Jane Doe uri://people#KatieSmith12  uri:// people#JaneDoe45 Subject Predicate Object 9 Wednesday, July 10, 13