CCS/CCUS Overview:
What It Is and What Are Its Implications?
AIChE Carbon Management Conference, Alexandria, VA
20 October...
Agenda
1:00

Welcome and Introductions

1:15

The Role of CCS/CCUS

1:45

Capturing CO2 From Power Generation and Industri...
Introducing the Global CCS Institute
The Global CCS Institute accelerates carbon capture
and storage, a vital technology t...
Globally	
  connected	
  membership	
  

INSTITUTE MEMBERSHIP NUMBERS AND LOCATIONS	
  
TOTAL 378

80	
  

136	
  

82	
  ...
The Global CCS Institute – what we do

Expert	
  support	
  to	
  Members	
  /	
  Projects	
  

Comprehensive	
  resources...
The Global Status of CCS: 2013
Key Institute publication

  2013 edition: released 10 October
  Comprehensive coverage o...
CCS/CCUS	
  Overview:	
  
	
  What	
  Is	
  It	
  &	
  What	
  	
  
Are	
  Its	
  ImplicaHons?	
  
CCS/CCUS	
  OVERVIEW:	
...
Presentation Topics
30,000 ft view – why are we here?
CCS vs. CCUS
Major Project portfolio
Standardization is key

8
Background	
  –	
  Why	
  are	
  we	
  here?	
  

9
Energy is Good: 25/90% Population
NORTH KOREA
•  20% access to electricity
•  Population is 3” shorter & 7 lbs. lighter
• ...
What is CCS?

11
What is CCS?

12
What is CCS?

13
What is CCS?

14
Setting the expectations…
• 
• 
• 
• 

15

December	
  17,	
  1903	
  
20	
  feet	
  in	
  alFtude	
  
120	
  feet	
  in	
...
David Black’s Flyover

16
In just 17 short years…
•  2003:	
  	
  DOE	
  Carbon	
  SequestraFon	
  Partnerships	
  	
  
•  2010:	
  	
  White	
  Hou...
In 17 years we go from…

18
…to this…

19
CCS	
  vs.	
  CCUS	
  –	
  What	
  is	
  CO2-­‐EOR	
  &	
  
why	
  is	
  it	
  important?	
  

20
What is CCS?

21
What is CCS?

22
Integrating CO2-EOR and CO2 Storage Could
Increase Storage Potential
CO2 Source

Oil to
Market

Production Well

CO2
Injec...
U.S.	
  CO2-­‐EOR	
  AcFvity	
  –	
  Oil	
  Fields	
  &	
  CO2	
  Sources	
  
120	
  
Dakota	
  Coal	
  
GasificaFon	
  
Pl...
Significant Volumes of CO2 Are Already Being
Injected for EOR in the U.S.
Location of
EOR / Storage

CO2 Source Type and L...
Oil	
  Recovery	
  &	
  CO2	
  Storage	
  From	
  	
  
"Next	
  GeneraFon"	
  CO2-­‐EOR	
  Technology*	
  	
  
Oil Recover...
Number of 1 GW Size Coal-Fired Power Plants*

Demand	
  for	
  CO2:	
  	
  Number	
  of	
  1	
  GW	
  Size	
  Coal-­‐Fired...
Linking	
  CO2	
  Supplies	
  with	
  CO2-­‐EOR	
  Demand	
  
0	
  

The	
  primary	
  EOR	
  markets	
  for	
  
excess	
 ...
CO2-EOR Global Potential
Region Name
Asia Pacific
Central and South America
Europe
Former Soviet Union
Middle East and Nor...
CO2-EOR Global Potential

30
CCUS Dependency & Challenges
•  Growth	
  in	
  producFon	
  from	
  CO2-­‐EOR	
  is	
  limited	
  by	
  the	
  
availabil...
Major	
  CCS	
  Project	
  Poriolio	
  

32
Major CCS Demonstration Projects
CCPI	
  

FutureGen 2.0
	
  

Large-­‐scale	
  TesHng	
  of	
  Oxy-­‐CombusHon	
  
	
  
D...
RCSP Phase III: Development Projects
Core	
  Sampling	
  Taken	
  

Seismic	
  Survey	
  	
  

5	
  

Completed	
  

Injec...
Global Portfolio

35
Global Portfolio - LSIP
GCCSI identified 65 Large Scale Integrated Projects
3 new LSIPs in Brazil, China, and Saudi Arabia...
Importance of CCUS (CO2-EOR)
SecFon	
  7.2:	
  	
  
CO2–EOR	
  DOMINATES	
  GEOLOGIC	
  STORAGE	
  
“It	
  is	
  es9mated	...
StandardizaFon	
  

38
EPA’s Regulatory “Train Wreck”

Source:	
  Edison	
  Electric	
  InsFtute;	
  Dick	
  Winschel,	
  CONSOL	
  Energy	
  
39
CCS Regulatory “Train Wreck”

40
TC-265 Working Groups
TC-­‐265	
  
Twined	
  
Secretariat	
  
Capture	
  

41

Transport	
  

Storage	
  

QuanFficaFon	
  ...
Thank you
Office Locations
Washington, DC
4501 Fairfax Drive, Suite 910
Arlington, VA 22203
Phone: (703) 528-8420
Fax: (70...
Capturing CO2 From Power Generation
and Industrial Processes
Kevin C O’Brien, PhD
Principal Manager Carbon Capture – the A...
Defining Carbon Capture
The Cost Driving Step in CCS / CCUS
Post Combustion Capture

Challenges
 
Most technologies need significant scaling to be relevant to power
generation
 
Lo...
Pre-Combustion Capture

Challenges:
 

Energy penalty still significant at around 20%

 

Commercial scale hydrogen turb...
Oxy-Combustion (Oxyfuel)

Challenges:
 

Requires an integrated plant

 

Development will require a whole of plant appr...
Large Scale Capture
LSIP = Large Scale Integrated Project
800,000 tpa for coal-based power gen
400,000 tpa for emission-in...
Large scale integrated CCS projects (LSIPs)
Wide variety of capture options being planned
Projects by capture type and industry
Power
generation

Industrial
applicati...
Significant amounts of CO2 are already being captured and
stored
CO2 captured by industry and project development stage

P...
Regional variations exist in preferred capture technology
Projects by location and capture type
United States
Europe
China...
Challenges for large-scale carbon capture

•  Demonstrating capture at larger scale in more industries
•  Reducing costs, ...
Capture R&D
Provides Promise of Driving Down
Capture Costs
Solvent Based Process

•  Absorption based process
•  Dissolve CO2 into solvent, i.e. aqueous amine
•  Solvent regeneratio...
Sorbent Based Process

•  Physi or Chemi sorption based process
•  Packed or Fluidized Beds
•  Lower pressure or increase ...
Membrane Based Process

•  Typically thin dense layer on porous substrate
•  Permeation of CO2 through dense layer due to ...
Relative Maturity of Capture Technologies

DOE/NETL’s	
  Exis-ng	
  Plants	
  R&D	
  Program	
  –Carbon	
  Dioxide,	
  Wat...
Final observations

•  Carbon capture is an established commercial
process in natural gas and chemical production.
•  Carb...
Southeast Regional Carbon Sequestration Partnership
CCS/CCUS Demonstration Projects

Presented to:
The Global CCS Institut...
Acknowledgements
 

 

 

This material is based upon work supported by the U.S.
Department of Energy National Energy T...
Presentation Outline
 

SECARB Early Test, Cranfield,
Mississippi
–  Project Overview
–  Lessons Learned: Large Scale
Inj...
SECARB’s Early Test
Cranfield, Mississippi

64
SECARB Early Test
Monitoring Large Volume Injection at Cranfield

Mississippi River
Natchez
Mississippi

3,000 m depth
Gas...
Cranfield Early Test Monitoring: Detailed Area of Study

66
Cumulative	
  CO2 Injected

9,000,000

July,	
  2013

8,000,000
7,000,000

CO2
(Metric	
  Tons)

6,000,000
5,000,000

4,00...
6
Time

SECARB Early Test: Cranfield Net CO2 Stored, July 2013
Jul-­‐13

4,500,000

May-­‐13

Mar-­‐13

Jan-­‐13

Nov-­‐12...
Midwest/Ohio Valley Regional Attributes and CO2 Utilization Opportunities

U.S. CO2-EOR Activity
119	
  
Dakota Coal
Gasif...
Financial & Production Benefits from “Next Generation” CO2-EOR

http://www.netl.doe.gov/energyanalyses/pubs/
NextGen_CO2_E...
x
x

NETL Next Generation CO2 Oil Recovery

CO2 Oil Recovery
80

CO2 Requirements
CO2 Oil Recovery Billion BBL

25

20
Bil...
SECARB’s Anthropogenic Test
Citronelle, Alabama

72
SECARB Phase III Anthropogenic Test
 

 

 

 

 

Carbon capture from Plant Barry
equivalent to 25MW.
12 mile CO2 pi...
CO2
absorption

Solvent
Management

Solvent
Regeneration

Gas Conditioning

Plant Barry Capture Unit: 25MW, 500 TPD

Compr...
Start with a Good Storage Site
•  Proven four-way closure at
Citronelle Dome
•  Injection site located within
Citronelle o...
SECARB Citronelle: MVA Sample Locations

•  One (1) Injector (D-9-7 #2)
•  Two (2) deep Observation
wells (D-9-8 #2 & D-9-...
The image cannot be displayed. Your
computer may not have enough memory to
open the image, or the image may have
been corr...
The image cannot be displayed. Your
computer may not have enough memory to
open the image, or the image may have
been corr...
The image cannot be displayed. Your
computer may not have enough memory to
open the image, or the image may have
been corr...
SECARB Citronelle: MVA & Closure
 

 

 
 

Shallow MVA
–  Groundwater sampling (USDW Monitoring)
–  Soil Flux
–  PFT ...
Future Plans
Citronelle UIC Permit Requirement:
“… the permittee shall demonstrate to the Department,
using monitoring and...
CO2	
  Storage	
  in	
  UnconvenHonal	
  Gas	
  
FormaHons	
  with	
  Enhanced	
  Gas	
  
Recovery	
  PotenHal	
  
Nino	
 ...
CO2	
  Storage	
  and	
  Enhanced	
  Coalbed	
  
Methane	
  Recovery	
  (ECBM)
	
  
•  Shallow	
  reservoir	
  with	
  low...
CBM	
  and	
  ECBM	
  Mechanisms	
  

Gas	
  Content	
  

Coalbed	
  Methane	
  ProducFon	
  
(CBM)	
  

Enhanced	
  Coalb...
Virginia	
  Tech	
  InjecFon	
  Tests
	
  

	
  (Funded	
  by	
  NETL/DOE,	
  Managed	
  or	
  in	
  

Partnership	
  with...
Russell	
  County	
  -­‐	
  Coal	
  Seams	
  Stage 4
Monitoring
Well

RU-84
BD114
Injection
Well

9.6 m
(3 ft)
Monitoring
...
CO2	
  InjecHon
	
  
09

8/

/0

02

09

5/

/0

02

09

2/

/0

02

09

09

0/

/3

01

7/

/2

01

09

4/

/2

10

10

10

10

10

10

10

10...
Tracer	
  Injec-on
	
  

January	
  21,	
  2009	
  -­‐	
  
500	
  ml	
  of	
  the	
  PTMCH	
  
tracer	
  

Miskovic,	
  20...
0	
  
03/22/11	
  

02/19/11	
  

01/20/11	
  

140	
  

100	
  
70	
  

80	
  
60	
  

50	
  

60	
  
40	
  

40	
  
30	
...
CO2	
  InjecFon	
  Decline-­‐Curve	
  Analysis	
  
Phase	
  II	
  InjecFon	
  Well	
  RU-­‐84	
  (BD-­‐114)	
  

Gas Produ...
Conclusions	
  from	
  Russell	
  County	
  
InjecHon	
  Test
	
  
•  1,007	
  tons	
  of	
  CO2	
  injected	
  into	
  19...
Current	
  Small-­‐Scale	
  InjecHon	
  Test	
  in	
  
Central	
  Appalachia	
  	
  

 Objectives:
  Inject 20,000 metri...
Field demonstration in Buchanan County, VA	
  
Scheduled October 2013
CO2	
  Plume	
  by	
  Layer	
  
MVA program for Buchanan County test	

	

Repeated from Russell County test: 	

	


• 
• 
• 

Atmospheric monitoring with ...
Three monitoring wells	

	

•  Location factors:	


• Access	

• Predicted plume growth	

• Specific tests	

• Future use	
...
Chattanooga Shale Study Area
Shale Test–
Injection and
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
AlChE-Global-CCS_Institute-Presentation-101813
Upcoming SlideShare
Loading in …5
×

AlChE-Global-CCS_Institute-Presentation-101813

1,228 views

Published on

The Global CCS Institute presented a workshop at the American Institute of Chemical Engineers (AIChE) ‘Carbon Management Technology Conference’ in Alexandria, Virginia on 20 October 2013.

Published in: Business, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,228
On SlideShare
0
From Embeds
0
Number of Embeds
315
Actions
Shares
0
Downloads
34
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

AlChE-Global-CCS_Institute-Presentation-101813

  1. 1. CCS/CCUS Overview: What It Is and What Are Its Implications? AIChE Carbon Management Conference, Alexandria, VA 20 October 2013
  2. 2. Agenda 1:00 Welcome and Introductions 1:15 The Role of CCS/CCUS 1:45 Capturing CO2 From Power Generation and Industrial Processes 2:15 Transport/Storage/Utilization of CO2 3:00 Legal/Regulatory Framework 3:30 Panel Discussion: Proactively Addressing the Management of CO2 4:00 Summary and Wrap-up 4:30 Networking Reception
  3. 3. Introducing the Global CCS Institute The Global CCS Institute accelerates carbon capture and storage, a vital technology to tackle climate change and provide energy security. We advocate for CCS as a crucial component in a portfolio of technologies required to reduce greenhouse gas emissions.   We drive the adoption of CCS as quickly and cost effectively as possible by sharing expertise, building capacity and providing advice and support to overcome challenges.   Our diverse international Membership comprises governments, global corporations, small companies, research bodies and non-government organisations committed to CCS as an integral part of a low–carbon future.   3  
  4. 4. Globally  connected  membership   INSTITUTE MEMBERSHIP NUMBERS AND LOCATIONS   TOTAL 378 80   136   82   3   5   74  
  5. 5. The Global CCS Institute – what we do Expert  support  to  Members  /  Projects   Comprehensive  resources       Networking  capability       Best  pracHce  guidelines  and  toolkits  
  6. 6. The Global Status of CCS: 2013 Key Institute publication   2013 edition: released 10 October   Comprehensive coverage on the state of CCS projects and technologies   Project progress outlined since 2010   Includes recommendations for moving forward 6  
  7. 7. CCS/CCUS  Overview:    What  Is  It  &  What     Are  Its  ImplicaHons?   CCS/CCUS  OVERVIEW:       The  Role  of  CCS/CCUS   Prepared By: Steven M. Carpenter, Vice, President ADVANCED RESOURCES INTERNATIONAL, INC. Arlington, VA 20 October 2013 7
  8. 8. Presentation Topics 30,000 ft view – why are we here? CCS vs. CCUS Major Project portfolio Standardization is key 8
  9. 9. Background  –  Why  are  we  here?   9
  10. 10. Energy is Good: 25/90% Population NORTH KOREA •  20% access to electricity •  Population is 3” shorter & 7 lbs. lighter •  Infant Mortality Rate in 12 x higher •  156th in GDP/Capita SOUTH KOREA •  90% access to electricity •  Population is 3” taller & 7 lbs. heavier •  Infant Mortality Rate 12 x lower •  32nd in GDP/capita 10
  11. 11. What is CCS? 11
  12. 12. What is CCS? 12
  13. 13. What is CCS? 13
  14. 14. What is CCS? 14
  15. 15. Setting the expectations… •  •  •  •  15 December  17,  1903   20  feet  in  alFtude   120  feet  in  distance   12  seconds  in  duraFon  
  16. 16. David Black’s Flyover 16
  17. 17. In just 17 short years… •  2003:    DOE  Carbon  SequestraFon  Partnerships     •  2010:    White  House  Interagency  JTF  on  CCS   •  2016:    5-­‐10  full  scale  demonstraFons   •  2020:    Widespread  commercial  deployment   17
  18. 18. In 17 years we go from… 18
  19. 19. …to this… 19
  20. 20. CCS  vs.  CCUS  –  What  is  CO2-­‐EOR  &   why  is  it  important?   20
  21. 21. What is CCS? 21
  22. 22. What is CCS? 22
  23. 23. Integrating CO2-EOR and CO2 Storage Could Increase Storage Potential CO2 Source Oil to Market Production Well CO2 Injection CO2 Recycled Swept Area Current Water Oil Contact Original Water Oil Contact Oil Bank Unswept Area TZ/ROZ Saline Reservoir Stage #1 Stage #2 Stage #3
  24. 24. U.S.  CO2-­‐EOR  AcFvity  –  Oil  Fields  &  CO2  Sources   120   Dakota  Coal   GasificaFon   Plant   Natural  CO2  Source   Industrial  CO2  Source   Antrim  Gas   Plant   1   LaBarge   Gas  Plant   6   Encore  Pipeline   2   McElmo  Dome   Sheep  Mountain   Bravo  Dome   1   Enid  FerFlizer  Plant   3   5   2   Jackson   Dome   17   Denbury/Green  Pipeline   Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources. 24 ExisHng  CO2  Pipeline   CO2  Pipeline  Under   Development     120 CO2-EOR projects provide 352,000 bbl/day 13   Lost  Cabin  Gas  Plant   70   Val  Verde   Gas  Plants   Number  of  CO2-­‐EOR   Projects     New CO2 pipelines are expanding CO2-EOR to new oil fields and basins.   320 mile Green Pipeline   226 mile Encore Pipeline
  25. 25. Significant Volumes of CO2 Are Already Being Injected for EOR in the U.S. Location of EOR / Storage CO2 Source Type and Location CO2 Supply (MMcfd) Geologic Anthropogenic 1,600 190 - 300 930 - Texas, New Mexico, Oklahoma, Utah Geologic (Colorado, New Mexico) Gas Processing, Fertilizer Plant (Texas) Colorado, Wyoming Gas Processing (Wyoming) Mississippi Geologic (Mississippi) Michigan Gas Processing (Michigan) - 10 Oklahoma Fertilizer Plant (Oklahoma) - 35 Saskatchewan Coal Gasification (North Dakota) - 150 2,530 685 49 13 TOTAL (MMcfd) TOTAL (MMt per year) * Source: Advanced Resources International, 2012 **MMcfd of CO2 can be converted to million metric tons per year by first multiplying by 365 (days per year) and then dividing by 18.9 * 103 (Mcf per metric ton) 25
  26. 26. Oil  Recovery  &  CO2  Storage  From     "Next  GeneraFon"  CO2-­‐EOR  Technology*     Oil Recovery*** (Billion Barrels) Reservoir Setting CO2 Demand/Storage*** (Billion Metric Tons) Technical Economic** Technical Economic** L-48 Onshore 104 60 32 17 L-48 Offshore/Alaska 15 7 6 3 Near-Miscible CO2-EOR 1 * 1 * ROZ (below fields)**** 16 13 7 5 Sub-Total 136 80 46 25 Additional From ROZ “Fairways” 40 20 16 8 *The values for economically recoverable oil and economic CO2 demand (storage) represent an update to the numbers in the NETL/ARI report “Improving Domestic Energy Security and Lowering CO2 Emissions with “Next Generation” CO2-Enhanced Oil Recovery (CO2-EOR) (June 1, 2011). **At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ***Includes 2.6 billion barrels already being produced or being developed with miscible CO2-EOR and 2,300 million metric tons of CO2 from natural sources and gas processing plants. **** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary. 26 26
  27. 27. Number of 1 GW Size Coal-Fired Power Plants* Demand  for  CO2:    Number  of  1  GW  Size  Coal-­‐Fired   Power  Plants   Technical Demand/ Storage Capacity 300   Total CO2 Anthropogenic CO2 Economic Demand/ Storage Capacity** Total CO2 Anthropogenic CO2 Technical L-48 Onshore 133   121   100   0   90 31 14 Near-Miscible CO2EOR 200   170 L-48 Offshore/Alaska 228   Economic* 5 1 ROZ** 34 28 Sub-Total 240   *Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operations per 1 GW of generating capacity. **At an oil price of $85/B, a CO2 market price of $40/mt and a 20% ROR, before. Source: Advanced Resources Int’l (2011). 27 Reservoir Setting Number of 1GW Size Coal-Fired Power Plants*** 240 133 Additional From ROZ “Fairways” 86 43 *At $85 per barrel oil price and $40 per metric ton CO2 market price with ROR of 20% (before tax). ** ROZ resources below existing oilfields in three basins; economics of ROZ resources are preliminary. ***Assuming 7 MMmt/yr of CO2 emissions, 90% capture and 30 years of operation per 1 GW of generating capacity; the U.S. currently has approximately 309 GW of coal-fired power plant capacity.
  28. 28. Linking  CO2  Supplies  with  CO2-­‐EOR  Demand   0   The  primary  EOR  markets  for   excess  CO2  supplies  from  the  Ohio   Valley,  South  AtlanFc  and  Mid-­‐ ConFnent  is  East/West  Texas  and   Oklahoma.   0.2   0.6   2.0   6.3   3.7   4.2   3.7   0.3   0.2   8 Bcfd 7.4   0.2   Captured CO2 Supplies and CO2 Demand Region New England Middle Atlantic South Atlantic East North Central West North Central East South Central West South Central Mountain Pacific Total ROZ "Fairways" Captured CO2 Supplies* (BMt) CO2 Excess CO2 Demand Supply (BMt) (BMt) 0.2 2.3 7.4 4.2 6.3 3.6 4.3 3.7 0.3 0.2 0.2 0.6 2.0 0.2 14.2 3.7 4.2 32.2 25.3 20.8 * Capture from 200 GW of coal-fired power plants, 90% capture rate. 28 3.6   Net CO2 Demand (BMt) 8.0   14.2   -­‐   0.2 2.1 7.2 3.6 4.3 3.3 8.0 0.2   2.3   4.2   4.3   cfd 19 B cfd 13 B Jackson Dome 9.9 Pacific   3.8 0.3   13.7 8.0 JAF2012_035.XLS 4.2   CO2 Demand by EOR (Bmt) Captured CO2 Emissions (Bmt) Sources: EIA Annual Energy Outlook 2011 for CO2 emissions; NETL/Advanced Resources Int’l (2011) CO2 demand.
  29. 29. CO2-EOR Global Potential Region Name Asia Pacific Central and South America Europe Former Soviet Union Middle East and North Africa North America/Other North America/United States South Asia S. Africa/Antarctica Total 29 Basin Count 8 7 2 6 11 3 14 1 2 54 EIA  assessment  of  54  large  world  oil  basins  for  CO2-­‐ based  Enhanced  Oil  Recovery   •  High  level,  1st  order  assessment  of  CO2-­‐EOR  and   associated  storage  potenFal,  using  U.S.   experience  as  analog.   •  Tested  basin-­‐level  esFmates  with  detailed   modeling  of  47  large  oil  fields  in  6  basins.  
  30. 30. CO2-EOR Global Potential 30
  31. 31. CCUS Dependency & Challenges •  Growth  in  producFon  from  CO2-­‐EOR  is  limited  by  the   availability  of  reliable,  affordable  CO2.   •  If  increased  volumes  of  CO2  do  not  result  from  CCUS,  then   these    benefits  from  CO2-­‐EOR  will  not  be  realized.   •  Therefore,  not  only  does  CCUS  need  CO2-­‐EOR  to  ensure   viability  of  CCUS,  but  CO2-­‐EOR  needs  CCUS  to  ensure  adequate   CO2  to  facilitate  CO2-­‐EOR  growth.   •  This  will  become  even  more  apparent  as  potenFal  even  more   new  targets  for  CO2-­‐EOR  become  recognized  &  internaFonal   desire  for  CO2-­‐EOR  grows.   31
  32. 32. Major  CCS  Project  Poriolio   32
  33. 33. Major CCS Demonstration Projects CCPI   FutureGen 2.0   Large-­‐scale  TesHng  of  Oxy-­‐CombusHon     DOE  Share:  Plant  -­‐    $1.04B     SALINE  –  1M  TPY  2017  start   ICCS  Area  1       FutureGen  2.0   Archer Daniels Midland CO2  Capture  from  Ethanol  Plant   DOE  Share:    $141M     SALINE  –  ~0.9M  TPY  2014  start   Summit TX Clean Energy   Commercial  Demo  of  Advanced   IGCC  w/  Full  Carbon  Capture   DOE  Share:  $450M   EOR  –  ~2.2  TPY  2017  start   Southern Company   Kemper County IGCC Project Novel  Transport  Gasifier     w/Carbon  Capture   DOE  Share:    $270M     EOR  –  ~3.0  M  TPY  2014  start   HECA   Commercial  Demo  of  Advanced   IGCC  w/  Full  Carbon  Capture   DOE  Share:    $408M     EOR  –    ~2.6M  TPY  2019  start   NRG W.A. Parish Generating Station Post  CombusHon  CO2  Capture   DOE  Share:  $167M     EOR  –    ~1.4M  TPY  2016  start   33 Air Products and Chemicals, Inc. CO2  Capture  from  Steam  Methane  Reformers   DOE  Share:    $284M     EOR  –    ~0.93M  TPY  2012  start   Leucadia Energy CO2  Capture  from  Methanol  Plant   DOE  Share:    $261M     EOR  –  ~4.5  M  TPY  2017  start  
  34. 34. RCSP Phase III: Development Projects Core  Sampling  Taken   Seismic  Survey     5   Completed   InjecFon  Started   June  2013   InjecFon  began   Nov  2011   1   4   InjecFon  started   in  depleted  reef     February  2013   3   Partnership Geologic Province Target Injection Volume (tonnes) 1   Big Sky Nugget Sandstone 1,000,000 2   MGSC 3   2    9   MRCSP 8   6   InjecFon  Started  April   2009   InjecFon  Ongoing   2013  InjecFon  Scheduled     Large-­‐volume  tests     Four  Partnerships  currently  injec9ng  CO2       Remaining  injec9ons  scheduled  2013-­‐2015   7   InjecFon  began   August  2012   4   5   PCOR 6   SECARB InjecFon  Scheduled  2013-­‐2015   7     8   SWP 9   WESTCARB 34 Illinois BasinMt. Simon Sandstone Michigan BasinNiagaran Reef Powder River BasinBell Creek Field Horn River BasinCarbonates Gulf Coast – Cranfield Field- Tuscaloosa Formation Gulf Coast – Paluxy Formation Regional CCUS Opportunity 1,000,000 1,000,000 1,500,000 2,000,000 3,400,000 250,000     1,000,000 Regional Characterization
  35. 35. Global Portfolio 35
  36. 36. Global Portfolio - LSIP GCCSI identified 65 Large Scale Integrated Projects 3 new LSIPs in Brazil, China, and Saudi Arabia 13 LSIPs removed/cancelled since 2012 4 LSIPs have commenced operation since 2012, for a total of 12 LSI-CCS projects in operation Reduction in # LSIPs reduces CO2 captured/stored from 148 million tonnes per annum (Mtpa) to 122 36
  37. 37. Importance of CCUS (CO2-EOR) SecFon  7.2:     CO2–EOR  DOMINATES  GEOLOGIC  STORAGE   “It  is  es9mated  that  during  the  past  40  years  nearly  1  Gt  of   CO2  has  been  injected  into  geological  reservoirs  as  part  of   CO2–EOR  ac9vi9es.”   •  Accounts for 78% of DOE Demonstration Projects (7 of 9) •  Accounts for 52% of LSIPs at various stages of the asset life cycle (34 of 65)     37 63% of operating phase projects (5 of 8) 75% of execution phase projects (3 of 4) Projects underway or planned in North America, South America, Europe, Asia, and Australia
  38. 38. StandardizaFon   38
  39. 39. EPA’s Regulatory “Train Wreck” Source:  Edison  Electric  InsFtute;  Dick  Winschel,  CONSOL  Energy   39
  40. 40. CCS Regulatory “Train Wreck” 40
  41. 41. TC-265 Working Groups TC-­‐265   Twined   Secretariat   Capture   41 Transport   Storage   QuanFficaFon  &   VerificaFon   Crossculng   CO2-­‐EOR  
  42. 42. Thank you Office Locations Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439 Houston, TX 11931 Wickchester Ln., Suite 200 Houston, TX 77043 Phone: (281) 558-9200 Fax: (281) 558-9202 Knoxville, TN 603 W. Main Street, Suite 906 Knoxville, TN 37902 Phone: (865) 541-4690 Fax: (865) 541-4688 Cincinnati, OH 1282 Secretariat Court Batavia, OH 45103 Phone: (513) 460-0360 Email: scarpenter@adv-res.com http://adv-res.com/ 42
  43. 43. Capturing CO2 From Power Generation and Industrial Processes Kevin C O’Brien, PhD Principal Manager Carbon Capture – the Americas
  44. 44. Defining Carbon Capture The Cost Driving Step in CCS / CCUS
  45. 45. Post Combustion Capture Challenges   Most technologies need significant scaling to be relevant to power generation   Loss of power around 30%           Needs cleaning of flue gases (SOx and NOx) Integration may reduce flexibility of power plant Increase in water around 35% Significant space requirements could be a challenge at well established sites Amine emissions
  46. 46. Pre-Combustion Capture Challenges:   Energy penalty still significant at around 20%   Commercial scale hydrogen turbine still to be demonstrated   Additional purification may be required in the event of venting   Gasification plants are unfamiliar to the power sector
  47. 47. Oxy-Combustion (Oxyfuel) Challenges:   Requires an integrated plant   Development will require a whole of plant approach   Air separation unit requires around 25% of electricity produced   Start up using air may require additional gas treating equipment   Increased water consumption
  48. 48. Large Scale Capture LSIP = Large Scale Integrated Project 800,000 tpa for coal-based power gen 400,000 tpa for emission-intensive industrial facilities (including natural gas-based power generation)
  49. 49. Large scale integrated CCS projects (LSIPs)
  50. 50. Wide variety of capture options being planned Projects by capture type and industry Power generation Industrial applications 0 5 10 Number of projects Pre-combustion (gasification) Post-combustion Industrial separation 15 20 25 30 35 40 45 Pre-combustion (natural gas processing) Oxy-fuel combustion Various/Not decided
  51. 51. Significant amounts of CO2 are already being captured and stored CO2 captured by industry and project development stage Power generation Natural gas processing Other industries 0 10 Mass of CO2 (Mtpa) Identify Evaluate 20 Define 30 Execute 40 Operate 50 60
  52. 52. Regional variations exist in preferred capture technology Projects by location and capture type United States Europe China Canada Australia Middle East Other Asia South America Africa 0 5 10 15 20 Number of projects Pre-combustion (gasification) Pre-combustion (natural gas processing) Post-combustion Oxy-fuel combustion Industrial separation Various/Not decided 25
  53. 53. Challenges for large-scale carbon capture •  Demonstrating capture at larger scale in more industries •  Reducing costs, including through the development of new technologies •  More effective knowledge sharing •  Integration of capture into large-scale power and industrial applications •  Flexible operation of power stations with CCS
  54. 54. Capture R&D Provides Promise of Driving Down Capture Costs
  55. 55. Solvent Based Process •  Absorption based process •  Dissolve CO2 into solvent, i.e. aqueous amine •  Solvent regeneration by heating
  56. 56. Sorbent Based Process •  Physi or Chemi sorption based process •  Packed or Fluidized Beds •  Lower pressure or increase temperature to regenerate
  57. 57. Membrane Based Process •  Typically thin dense layer on porous substrate •  Permeation of CO2 through dense layer due to solution / diffusion through membrane •  N2 and other components rejected (retentate) and emitted up the stack
  58. 58. Relative Maturity of Capture Technologies DOE/NETL’s  Exis-ng  Plants  R&D  Program  –Carbon  Dioxide,  Water,  &   Mercury,  June  2010  
  59. 59. Final observations •  Carbon capture is an established commercial process in natural gas and chemical production. •  Carbon capture is being demonstrated in power generation. •  Primary challenges for capture are related to process economics – parasitic power and capital costs •  There are many options for capture approaches and processes – there is no “holy grail” •  Continued R&D in capture is vital to reduce overall costs of CCS / CCUS
  60. 60. Southeast Regional Carbon Sequestration Partnership CCS/CCUS Demonstration Projects Presented to: The Global CCS Institute’s CCS/CCUS Overview Workshop Alexandria, VA October 20, 2013 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board
  61. 61. Acknowledgements       This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory. Cost share and research support provided by SECARB/SSEB Carbon Management Partners. Anthropogenic Test CO2 Capture Unit funded separately by Southern Company and partners. 62
  62. 62. Presentation Outline   SECARB Early Test, Cranfield, Mississippi –  Project Overview –  Lessons Learned: Large Scale Injection at CO2-EOR Site –  Commercial Significance of CCUS   SECARB Anthropogenic Test, Citronelle, Alabama –  Project Overview –  Lessons Learned: Capture, Transportation & Injection Integration –  Innovative monitoring techniques 63
  63. 63. SECARB’s Early Test Cranfield, Mississippi 64
  64. 64. SECARB Early Test Monitoring Large Volume Injection at Cranfield Mississippi River Natchez Mississippi 3,000 m depth Gas cap, oil ring, downdip water leg Shut in since 1965 Strong water drive Returned to near initial pressure Illustration by Tip Meckel 65
  65. 65. Cranfield Early Test Monitoring: Detailed Area of Study 66
  66. 66. Cumulative  CO2 Injected 9,000,000 July,  2013 8,000,000 7,000,000 CO2 (Metric  Tons) 6,000,000 5,000,000 4,000,000 8,073,395 Cumulative Total Cumulative  Volume Injected  West Cumulative  Volume Injected  East 4,146,143 3,927,251 3,000,000 2,000,000 1,000,000 Jul-­‐08 Sep-­‐08 Nov-­‐08 Jan-­‐09 Mar-­‐09 May-­‐09 Jul-­‐09 Sep-­‐09 Nov-­‐09 Jan-­‐10 Mar-­‐10 May-­‐10 Jul-­‐10 Sep-­‐10 Nov-­‐10 Jan-­‐11 Mar-­‐11 May-­‐11 Jul-­‐11 Sep-­‐11 Nov-­‐11 Jan-­‐12 Mar-­‐12 May-­‐12 Jul-­‐12 Sep-­‐12 Nov-­‐12 Jan-­‐13 Mar-­‐13 May-­‐13 Jul-­‐13 0 Time SECARB Early Test: Cumulative CO2 Injected, July 2013 6
  67. 67. 6 Time SECARB Early Test: Cranfield Net CO2 Stored, July 2013 Jul-­‐13 4,500,000 May-­‐13 Mar-­‐13 Jan-­‐13 Nov-­‐12 Sep-­‐12 Jul-­‐12 May-­‐12 Mar-­‐12 Jan-­‐12 Nov-­‐11 Sep-­‐11 Jul-­‐11 May-­‐11 Mar-­‐11 Jan-­‐11 Nov-­‐10 Sep-­‐10 Jul-­‐10 May-­‐10 Mar-­‐10 Jan-­‐10 Nov-­‐09 Sep-­‐09 Jul-­‐09 May-­‐09 Mar-­‐09 Jan-­‐09 Nov-­‐08 Sep-­‐08 Jul-­‐08 CO2 (Metric  Tons) 5,000,000 Cranfield  Net  CO2 Stored July,  2013 4,377,834 4,000,000  CO2  Stored 3,500,000 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 0
  68. 68. Midwest/Ohio Valley Regional Attributes and CO2 Utilization Opportunities U.S. CO2-EOR Activity 119   Dakota Coal Gasification Plant Natural  CO2  Source   Industrial  CO2  Source   Antrim Gas Plant 1   LaBarge Gas Plant Encore Pipeline 6   1   Enid  FerFlizer  Plant   4   McElmo Dome Sheep Mountain Bravo Dome 3   70   Val Verde Gas Plants 2   Jackson Dome 17   Denbury/Green Pipeline Source: Advanced Resources International, Inc., based on Oil and Gas Journal, 2012 and other sources. 69 JAF2012_081.PPT August 6, 2012 ExisFng  CO2  Pipeline   CO2  Pipeline  Under   Development     Currently, 119 CO2-EOR projects provide 352,000 B/D. 13   Lost  Cabin  Gas  Plant   2   Number  of  CO2-­‐EOR   Projects     New CO2 pipelines - - the 320 mile Green Pipeline and the 226 mile Encore Pipeline - are expanding CO2-EOR to new oil fields and basins.   The single largest constraint to increased use of CO2-EOR is the lack of available, affordable CO2 supplies.
  69. 69. Financial & Production Benefits from “Next Generation” CO2-EOR http://www.netl.doe.gov/energyanalyses/pubs/ NextGen_CO2_EOR_06142011.pdf
  70. 70. x x NETL Next Generation CO2 Oil Recovery CO2 Oil Recovery 80 CO2 Requirements CO2 Oil Recovery Billion BBL 25 20 Billion Tons of CO2 70 15 10 5 60 50 40 30 20 10 0 0 Natural Anthropogenic Billion Barrels Oil Context - Total Proven US Oil Reserves @ 2010 = 30.9 Billion BBL BP Annual Statistical Review - 2011 71
  71. 71. SECARB’s Anthropogenic Test Citronelle, Alabama 72
  72. 72. SECARB Phase III Anthropogenic Test           Carbon capture from Plant Barry equivalent to 25MW. 12 mile CO2 pipeline constructed by Denbury Resources. CO2 injection into ~9.400 ft. deep saline formation (Paluxy) Over 90,000 metric tons injected (October 2013) Monitoring CO2 during injection and 3 years post-injection. 73
  73. 73. CO2 absorption Solvent Management Solvent Regeneration Gas Conditioning Plant Barry Capture Unit: 25MW, 500 TPD Compression 74
  74. 74. Start with a Good Storage Site •  Proven four-way closure at Citronelle Dome •  Injection site located within Citronelle oilfield where existing well logs are available •  Deep injection interval (Paluxy Form. at 9,400 feet) •  Numerous confining units •  Base of USDWs ~1,400 feet •  Existing wells cemented through primary confining unit •  No evidence of faulting or fracturing (2D) 75
  75. 75. SECARB Citronelle: MVA Sample Locations •  One (1) Injector (D-9-7 #2) •  Two (2) deep Observation wells (D-9-8 #2 & D-9-9 #2) •  Two (2) in-zone Monitoring wells (D-4-13 & D-4-14) •  One (1) PNC logging well (D-9-11) •  Twelve (12) soil flux monitoring stations 76
  76. 76. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 77
  77. 77. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 78
  78. 78. The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still 79
  79. 79. SECARB Citronelle: MVA & Closure         Shallow MVA –  Groundwater sampling (USDW Monitoring) –  Soil Flux –  PFT Surveys Deep MVA –  Reservoir Fluid sampling –  Crosswell Seismic –  Mechanical Integrity Test (MIT) –  CO2 Volume, Pressure, and Composition analysis –  Injection, Temperature, and Spinner logs –  Pulse Neutron Capture logs –  Vertical Seismic Profile MVA Experimental tools Closure – plug & abandon wells Baseline 1 year APR 2011 to AUG 2012 Injection 2 years Post 3 years SEPT 2012 to SEPT 2014 OCT 2014 to SEPT 2017 80
  80. 80. Future Plans Citronelle UIC Permit Requirement: “… the permittee shall demonstrate to the Department, using monitoring and modeling data and other information that the CO2 is safely confined within the injection zone and that USDWs are not endangered by the CO2 plume.” Citronelle Monitoring Question: What active or passive tests can we perform during site closure that will help demonstrate to regulators that the CO2 is trapped (or the plume is slowing) and no longer an endangerment to USDWs? 81
  81. 81. CO2  Storage  in  UnconvenHonal  Gas   FormaHons  with  Enhanced  Gas   Recovery  PotenHal   Nino  Ripepi,  Assistant  Professor,   Department  of  Mining  &  Minerals  Engineering   Virginia  Center  for  Coal  and  Energy  Research   Virginia  Tech       CMTC CCS Session October 20, 2013, Alexandria, VA
  82. 82. CO2  Storage  and  Enhanced  Coalbed   Methane  Recovery  (ECBM)   •  Shallow  reservoir  with  low  P  &  T  can  result  in   lower  compression  costs   •  Gas  is  stored  in  coal  securely  by  adsorpFon   rather  than  by  free  storage  or  soluFon   •  Unmineable  Coal  Seams:  200  Billion  Tons  of   Capacity  in  the  U.S.  –  25  years  of  current   GHG  emissions  (DOE)   •  ECBM  potenFal  ~  150  Tcf  (Reeves,  2002)   •  Central  App:    >  than  6,000  CBM  wells  
  83. 83. CBM  and  ECBM  Mechanisms   Gas  Content   Coalbed  Methane  ProducFon   (CBM)   Enhanced  Coalbed  Methane   ProducFon  (ECBM)   VL VL/2 Dewatering   Under  saturated   PL (i)  Dewatering:  pressure  ,   effecFve  stress  ,  fracture   apertures    permeability     (ii)  CH4  releasematrix  shrinkage   and  zero  volume  change   condiFon,  fracture  apertures     ,  permeability     •  Net  Permeability:      CompeFng  effects  (i)-­‐(ii)     Pressure   CO2 CH4 (i)  CO2  greater  affinity  to  coal   than  CH4     (ii)  Depending  on  coal  rank  coal   matrix  can  adsorb  twice  to  as   hish  as  ten  Fmes  more  CO2    as   CH4     (iii)  When  CO2  is  adsorbed  matrix   swells;  under  zero  volume   change  condiFon,  fracture   apertures    ,  permeability    
  84. 84. Virginia  Tech  InjecFon  Tests    (Funded  by  NETL/DOE,  Managed  or  in   Partnership  with  SECARB/SSEB)   •  Performed  Pilot  CO2  InjecFon  Field  Tests  in   Virginia  (1,000  tons)  and,  under  the  direcFon   of  the  GSA,  in  Alabama  (300  tons)  (Phase  II,   2005–2010)   •  In  Progress,  a  Small-­‐Scale  InjecFon  Test  in   Central  Appalachia  (20,000  tons)  into   UnconvenHonal  Storage  Reservoirs  with     Emphasis  on  Enhanced  Coalbed  Methane   Recovery  (2011–2015)  
  85. 85. Russell  County  -­‐  Coal  Seams  Stage 4 Monitoring Well RU-84 BD114 Injection Well 9.6 m (3 ft) Monitoring Well Greasy Creek 1 Seaboard 2 Lower Seabord 1&2 Lower Seaboard 3 Upper Horsepen 2&3 Stage 3 9.8 m (3 ft) Middle Horsepen 1 Middle Horsepen 2 Pocahontas 11 Pocahontas 10 Lower Horsepen 1 Lower Horsepen 2 Stage 2 4th Hydraulic Fracture Zone 9.3 m (2.8 ft) 3rd Hydraulic Fracture Zone Stage 1 2nd Hydraulic Fracture Zone 1st Hydraulic Fracture Zone Pocahontas 9 Pocahontas 8-1 Pocahontas 8-2 Pocahontas 7-1A Pocahontas 7-1B Pocahontas 7-2 Pocahontas 7-3 7.6 m !(2.3 ft) Pocahontas 6 Pocahontas 5 Pocahontas 4-1 Pocahontas 4-2 Pocahontas 3-1 Pocahontas 3-4
  86. 86. CO2  InjecHon  
  87. 87. 09 8/ /0 02 09 5/ /0 02 09 2/ /0 02 09 09 0/ /3 01 7/ /2 01 09 4/ /2 10 10 10 10 10 10 10 10 10 11 11 Injection Well (psia) CO2 Process Temperature (F) CO2 Injection Rate (tons/day) 900 90 800 80 700 70 600 60 500 50 400 40 300 30 200 20 100 10 0 0 CO2 Injection Rate (tons/day) 1000 01 09 1/ /2 01 09 09 8/ /1 01 09 5/ /1 01 2/ /1 01 09 9/ /0 01 Injection Pressure (psia) Temperature (Degrees F) CO2  InjecFon   100
  88. 88. Tracer  Injec-on   January  21,  2009  -­‐   500  ml  of  the  PTMCH   tracer   Miskovic,  2011  
  89. 89. 0   03/22/11   02/19/11   01/20/11   140   100   70   80   60   50   60   40   40   30   20   20   10   0   Gas  ComposiHon  (%)   Methane   12/20/10   11/20/10   10/20/10   09/20/10   08/20/10   Carbon  Dioxide   07/21/10   06/20/10   05/21/10   04/20/10   03/21/10   02/18/10   BD-­‐114  Flowback   01/19/10   12/19/09   11/19/09   10/19/09   09/19/09   08/19/09   07/20/09   06/19/09   05/20/09   Gas  ProducHon  (Mcf/day)   Russell  County  Flowback   Nitrogen   100   90   120   80  
  90. 90. CO2  InjecFon  Decline-­‐Curve  Analysis   Phase  II  InjecFon  Well  RU-­‐84  (BD-­‐114)   Gas Production, Mcf/month Post CO2 Injection EUR = 534 MMcf Pre CO2 Injection EUR = 319 MMcf Shut-in Period with CO2 Injection mid November ‘08 – mid May ‘09
  91. 91. Conclusions  from  Russell  County   InjecHon  Test   •  1,007  tons  of  CO2  injected  into  19  coal  seams  in  2009   •  InjecFon  rate  higher  than  anFcipated  at  an  average  of   over  40  tons  per  day,  but  decrease  at  the  end  to  an   injecFon  rate  of  <20  tons  per  day   •  ECBM  measured  in  2  wells  (Unsustainable  due  to  small   CO2  volume)   •  Tracer  detecFon  at  off-­‐set  wells,  but  no  measured    CO2   breakthrough   •  Flowback   –  ProducFon  returned  to  beser  than  pre-­‐injecFon  rates   –  Flowback  showed  N2,  CH4  then  CO2  desorpFon  
  92. 92. Current  Small-­‐Scale  InjecHon  Test  in   Central  Appalachia      Objectives:   Inject 20,000 metric tons of CO2 into 3 CBM wells over a one-year period in Buchanan County, VA   Perform a small 300-1,000 ton Huff and Puff test in a horizontal shale gas well in Morgan County, TN  Duration:   4 years, October 1, 2011–September 30, 2015  Funding:   Total Project Value: $14,374,090   DOE/Non-DOE: $11,499,265 / $2,874,825
  93. 93. Field demonstration in Buchanan County, VA   Scheduled October 2013
  94. 94. CO2  Plume  by  Layer  
  95. 95. MVA program for Buchanan County test Repeated from Russell County test: •  •  •  Atmospheric monitoring with IRGAs to measure CO2 concentration Surface methods including soil CO2 flux, surface water sampling and shallow tracer detection Offset well testing for gas composition (CO2 concentration, tracers, ECBM) New components: •  Multiple tracer injection •  3 monitoring wells by zone •  Surface deformation measurement •  Tomographic fracture imaging •  Passive measurement of seismic energy emissions (similar to microseismic monitoring)
  96. 96. Three monitoring wells •  Location factors: • Access • Predicted plume growth • Specific tests • Future use •  Formation logging: • Reservoir saturation • Sonic • Others TBD •  Gas content: • CO2 • Methane • Tracers •  Core collection
  97. 97. Chattanooga Shale Study Area
  98. 98. Shale Test– Injection and

×