Introduction to Nanotechnology: Part 4


Published on

Published in: Business, Technology
  • Be the first to comment

Introduction to Nanotechnology: Part 4

  1. 1. Basic Nanotechnology Commercial Activity
  2. 2. Mystery of Life Sciences <ul><li>When we remember we are all mad </li></ul><ul><li>the mysteries of life disappear and life stands explained. </li></ul><ul><ul><ul><ul><ul><li>-Mark Twain </li></ul></ul></ul></ul></ul>
  3. 3. Life <ul><li>Perspective </li></ul><ul><li>Atom 0.1 nm </li></ul><ul><li>DNA (width) 2 nm </li></ul><ul><li>Protein 5 – 50 nm </li></ul><ul><li>Virus 75 – 100 nm </li></ul><ul><li>Materials internalized by cells < 100 nm </li></ul><ul><li>Bacteria 1,000 – 10,000 nm </li></ul><ul><li>White Blood Cell 10,000 nm </li></ul>
  4. 4. Life <ul><li>Biopharmaceutics </li></ul><ul><ul><li>Drug Delivery </li></ul></ul><ul><ul><ul><li>Drug Encapsulation </li></ul></ul></ul><ul><ul><ul><li>Functional Drug Carriers </li></ul></ul></ul><ul><ul><li>Drug Discovery </li></ul></ul><ul><li>Implantable Materials </li></ul><ul><ul><li>Tissue Repair and Replacement </li></ul></ul><ul><ul><ul><li>Implant Coatings </li></ul></ul></ul><ul><ul><ul><li>Tissue Regeneration Scaffolds </li></ul></ul></ul><ul><ul><li>Structural Implant Materials </li></ul></ul><ul><ul><ul><li>Bone Repair </li></ul></ul></ul><ul><ul><ul><li>Bioresorbable Materials </li></ul></ul></ul><ul><ul><ul><li>Smart Materials </li></ul></ul></ul><ul><li>Implantable Devices </li></ul><ul><ul><li>Assessment and Treatment Devices </li></ul></ul><ul><ul><ul><li>Implantable Sensors </li></ul></ul></ul><ul><ul><ul><li>Implantible Medical Devices </li></ul></ul></ul><ul><ul><li>Sensory Aids </li></ul></ul><ul><ul><ul><li>Retina Implants </li></ul></ul></ul><ul><ul><ul><li>Cochlear Implants </li></ul></ul></ul><ul><li>Surgical Aids </li></ul><ul><ul><li>Operating Tools </li></ul></ul><ul><ul><ul><li>Smart Instruments </li></ul></ul></ul><ul><ul><ul><li>Surgical Robots </li></ul></ul></ul><ul><li>Diagnostic Tools </li></ul><ul><ul><li>Genetic Testing </li></ul></ul><ul><ul><ul><li>Ultra-sensitive Labeling and </li></ul></ul></ul><ul><ul><ul><ul><li>Detection Technologies </li></ul></ul></ul></ul><ul><ul><ul><li>High Throughput Arrays and </li></ul></ul></ul><ul><ul><ul><ul><li>Multiple Analyses </li></ul></ul></ul></ul><ul><ul><li>Imaging </li></ul></ul><ul><ul><ul><li>Nanoparticle Labels </li></ul></ul></ul>
  5. 5. Life <ul><li>Biopharmaceutics </li></ul><ul><li>Drug Delivery </li></ul><ul><li>Drugs need to be protected during their transit to the target site in the body while maintaining their biological and chemicals properties. </li></ul><ul><li>Some drugs are highly toxic if they decompose during their delivery. </li></ul><ul><li>The drug delivery material must be compatible and bind easily with the drug, and be either metabolized or eliminated via normal excretory routes. </li></ul><ul><li>The production process must not degrade the drug, and be cost effective. </li></ul>
  6. 6. Life <ul><li>Drug Encapsulation - Tuberculosis </li></ul>Division of Engineering and Applied Sciences / Department of Physics Harvard University
  7. 7. Life <ul><li>Drug Encapsulation </li></ul>Division of Engineering and Applied Sciences / Department of Physics Harvard University
  8. 8. Life <ul><li>Drug Delivery </li></ul>
  9. 9. Life <ul><li>Drug Delivery </li></ul>
  10. 10. Life <ul><li>Implantable Materials - Implant Coatings </li></ul><ul><li>Catheters, heart valves, artificial hips </li></ul><ul><li>Implants confuse the cells responsible for tissue regeneration and causes the body to react as if it had encountered foreign material. </li></ul><ul><li>The body's natural response to foreign material is to wall it off with scar-like tissue. This reaction can disrupt device performance. </li></ul>
  11. 11. Life <ul><li>Implantable Materials - Implant Coatings </li></ul>A layer of desired proteins is spread over a smooth surface like mica. The proteins and mica are then coated with a thin layer of sugar molecules, which in turn is covered with a Teflon-like polymer coating. The coating is then peeled off the mica and dipped into a solution to dissolve the proteins. This leaves behind a polymer coating containing sugar-lined pits in the exact shape of the specific proteins.
  12. 12. Life <ul><li>Implantable Materials - Tissue Regeneration Scaffolds </li></ul><ul><li>Burns 1 u m pores </li></ul>A is sponge-like collagen matrix provides an &quot;open scaffold&quot; structure, which permits dermal cells to migrate into and throughout the sponge and to deposit human collagen and glycosaminoglycans (human skin &quot;biomatrix&quot;). The open pores allow the patient’s wound bed fibroblasts to migrate in and rebuild the tissue.
  13. 13. Life <ul><li>Implantable Materials - Bone Repair </li></ul><ul><ul><ul><ul><ul><li> Hydrocel </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>chemical vapor </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>deposition </li></ul></ul></ul></ul></ul>
  14. 14. Life <ul><li>Implantable Materials - Bioresorbable Materials </li></ul>
  15. 15. Life <ul><li>Implantable Materials - Bioresorbable Materials </li></ul><ul><li>Scanning electron micrograph </li></ul><ul><li>of human osteoblast cells </li></ul><ul><li>attaching within a pore of </li></ul><ul><li>a Bioglass porous foam </li></ul><ul><li>Professor Julia Polak, Director Imperial College Tissue </li></ul><ul><li>Engineering & Regenerative </li></ul><ul><li>Medicine Centre </li></ul>
  16. 16. Life <ul><li>Implantable Materials - Smart Materials </li></ul>
  17. 17. Life <ul><li>Implantable Materials - Smart Materials </li></ul>A fiber made of biodegradable memory plastic used to tie a smart suture. After forming a loose knot, the ends of the suture are fixed when heated.
  18. 18. Life <ul><li>Implantable Materials - Smart Materials </li></ul>Ray Baughman
  19. 19. Life <ul><li>Implantable Materials - Smart Materials </li></ul><ul><li>Drug pumps </li></ul><ul><li>Artificial muscles </li></ul><ul><li>Guide wires </li></ul>
  20. 20. Life <ul><li>Implantable Sensors </li></ul><ul><li>CardioMEMS microchip that could be implanted in the body to transmit information about blood flow and pressure wirelessly. </li></ul>
  21. 21. Life <ul><li>Implantible Medical Devices </li></ul><ul><li>Coatings </li></ul><ul><li>Sensors </li></ul><ul><li>Drug & other delivery </li></ul><ul><li>Primarily MEMS </li></ul>Medtronic, Inc
  22. 22. Life <ul><li>Sensory Aids </li></ul><ul><ul><li>Retina Implants </li></ul></ul>
  23. 23. Life <ul><li>Sensory Aids </li></ul><ul><ul><li>Retina Implants </li></ul></ul>Makoto Ishida Department of Electrical & Electronic Engineering, Toyohashi University of Technology
  24. 24. Life <ul><li>Sensory Aids </li></ul><ul><ul><li>Retina Implants </li></ul></ul>Makoto Ishida Department of Electrical & Electronic Engineering, Toyohashi University of Technology
  25. 25. Life <ul><li>Cochlear Implants </li></ul><ul><li>Coatings (rejection/infection) </li></ul><ul><li>Finer electrode arrays </li></ul><ul><li>Better on board signal processing </li></ul>
  26. 26. Life <ul><li>Smart Instruments </li></ul><ul><li>can learn individual preferences and tendencies to provide automated assistance, thereby acting as an &quot;intelligent assistant&quot; </li></ul><ul><li>i.e. biochips </li></ul>
  27. 27. Life <ul><li>Surgical Robots </li></ul><ul><li>Scales the surgeon's hand into precise micro-movements at the operative site. </li></ul>                                              
  28. 28. Life <ul><li>Ultra-sensitive Labeling and </li></ul><ul><ul><li>Detection Technologies </li></ul></ul><ul><ul><li>Electrical impedance measurements of the live microorganism, Listeria innocua , injected into the chip demonstrate an easy method for detecting the viability of a few bacterial cells. </li></ul></ul><ul><ul><li>Rafael Gómez, D. Akin, Rashid Bashir, School of Electrical and Computer Engineering </li></ul></ul><ul><ul><li>T. Huang, M. Ladisch, Department of Agricultural and Biological Engineering </li></ul></ul><ul><ul><li>T. Geng, A. Bhunia, Department of Food Sciences </li></ul></ul><ul><ul><li>Purdue University </li></ul></ul>
  29. 29. Life <ul><li>High Throughput Arrays and </li></ul><ul><ul><li>Multiple Analyses </li></ul></ul><ul><ul><li>Affymetrix arrays hold over 500,000 DNA probe locations within 1.28 square centimeters </li></ul></ul>
  30. 30. Life <ul><li>Imaging </li></ul><ul><ul><li>Nanoparticle Labels </li></ul></ul><ul><ul><li>analytical electrophoresis </li></ul></ul><ul><ul><li>colorimetric labels enzymatic diagnostic procedures </li></ul></ul><ul><ul><li>DNA array testing </li></ul></ul><ul><ul><li>Clinical DNA assays for drug efficacy </li></ul></ul><ul><ul><li>Clinical DNA assays for nucleotide polymorphisms </li></ul></ul><ul><ul><ul><li>common DNA sequence variations among individuals </li></ul></ul></ul><ul><ul><li>Clinical DNA assays for multifactorial disease </li></ul></ul>Chad A. Mirkin Department of Chemistry Northwestern University                          
  31. 31. Life Market Size >$68 billion Watch: Agenda Partek Celera Agilent Calipertech Mikrotechnik Aclara Affymetrix Arraying Biodiscovery Genelogic Molecular-sensing Rii Axon Nanogen Lumicyte
  32. 32. Life <ul><li>454 CORPORATION </li></ul><ul><li>Accelrys Inc. </li></ul><ul><li>ADVANCED MAGNETICS, INC. </li></ul><ul><li>ADVECTUS LIFE SCIENCES, INC. </li></ul><ul><li>Advion BioSciences Inc. </li></ul><ul><li>ALCATEL Micro Machining Systems </li></ul><ul><li>Alnis BioSciences, Inc. </li></ul><ul><li>American Pharmaceutical Partners, Inc. </li></ul><ul><li>AMERSHAM BIOSCIENCES </li></ul><ul><li>ANSON NANO-BIOTECHNOLOGY (SHENZHEN) Co. LTD. </li></ul><ul><li>APPLIED MOLECULAR EVOLUTION, INC. </li></ul><ul><li>ARGONIDE CORP. </li></ul><ul><li>ARTIMPLANT AB </li></ul><ul><li>ASYLUM RESEARCH </li></ul><ul><li>ATOMIC FORCE F&E GmbH </li></ul><ul><li>BAXTER HEALTHCARE CORPORATION </li></ul><ul><li>BAYER CORP. </li></ul><ul><li>BioDelivery Sciences International, Inc. </li></ul><ul><li>BioForce Nanosciences, Inc. </li></ul><ul><li>Biomix Network Ltd </li></ul><ul><li>BIOPLEX CORP. </li></ul><ul><li>BIOSANTE PHARMACEUTICALS, INC. </li></ul><ul><li>BIOSOURCE INTERNATIONAL, INC. </li></ul><ul><li>BIOTOOLS INC. </li></ul><ul><li>BIOTROVE INC. </li></ul><ul><li>BTG plc </li></ul><ul><li>C SIXTY INC. </li></ul>CANTION A/S Capsulution NanoScience AG CELL ROBOTICS INTERNATIONAL INC. Competitive Technologies, Inc. CYTIMMUNE SCIENCES, INC. Dendritic Nanotechnologies Limited DYNAL BIOTECH ASA Eiffel Technologies Limited ELAN CORPORATION, PLC Emergency Filtration Products Inc. ENGENE OS, INC. EnviroSystems, Inc. Evident Technologies, Inc. F. HOFFMANN-LA ROCHE LTD. FERX, INC. Flamel Technologies, Inc. GENEFLUIDICS GENICON SCIENCES CORP. GENORX GILEAD SCIENCES IMEDD INC. IMPLEX CORP. Innovative Micro Technology INSERT THERAPEUTICS, INC. INSTITUT STRAUMANN AG INTEGRATED NANOSYSTEMS, INC. ISOTRON CORPORATION ItN Nanovation GmbH JPK INSTRUMENTS AG KnowmTech, LLC LIPLASOME PHARMA A/S METALLICUM LLC MICROCHIPS MICROMOD PARTIKELTECHNOLOGIE GMBH MOLECUBOTICS, INC. NANO-X GmbH NanobacLabs Pharmaceuticals, Inc. NANOBIO CORPORATION NanoBioMagnetics, Inc. (NBMI) NanoCarrier Co., Ltd. NANODELIVERY, INC. Nanofilm Technologie GmbH NanoGram Devices Corporation NANOLYTICS, INC. NANOMED PHARMACEUTICALS, INC. NANOMEDICA INC. NANOMEDICA, INC. NANOMEDX GmbH NANOMIX INC. NANOPHARM AG Nanoprex, Inc. NanoPro Corp. NANOPROBES, INC. NANOSCALE COMBINATORIAL SYNTHESIS, INC. NANOSPECTRA BIOSCIENCES, INC. NANOSPHERE, INC. NANOSTREAM INC. Nanostructures, Inc. Nanotherapeutics, Inc. NANOTYPE GmbH NOVAGEN, INC. NP NANOPRODUKTER AB NPOINT, INC. NPR HEALTHCARE ODYSSEY PHARMACEUTICALS, INC. ORTHOVITA, INC. OXFORD BIOSENSORS LTD. OXONICA, LTD. PHARMASEQ, INC. Picoliter Inc. POTENTIA PHARMACEUTICALS Power Paper Ltd. PROLUME LTD. (NANOLIGHT TECHNOLOGIES) PROTEOME SYSTEMS PROTIVERIS pSivida Limited QinetiQ Group PLC Quantum Dot Corporation Quantum Insight QUANTUM LOGIC DEVICES, INC. QUANTUM POLYMER TECHNOLOGIES RELAB AG Robiobotics, LLC SCHERING AG SENSE PROTEOMIC LIMITED SKYEPHARMA SOLEXA LTD. Solubest Ltd. SPHERICS, INC. STAR INC. STARPHARMA GROUP SuNyx Surface Nanotechnologies GmbH Surface Logix, Inc. SURROMED, INC. Syrrx Inc. TAKARA BIO INC. (TAKARA HOLDINGS INC.) TARGESOME, INC. TECAN GROUP AG Teragenics, Inc. Thales Nanotechnology Ltd Triton BioSystems, Inc. U.S. Genomics Velbionanotech WESTAIM BIOMEDICAL CORP. ZEPTOSENS AG ZYOMYX, INC. ZYVEX CORPORATION
  33. 33. Break
  34. 34. Basic Nanotechnology Commercial Activity
  35. 35. The Future <ul><li>The future, </li></ul><ul><li>according to some scientists </li></ul><ul><li>will be exactly like the past </li></ul><ul><li>only far more expensive. </li></ul><ul><ul><li>-John Sladek </li></ul></ul>
  36. 36. The Future <ul><li>Pundits vs. Science </li></ul><ul><li>Intel will be manufacturing devices by 2007 with feature sizes about 20 nanometers across. </li></ul><ul><li>A red blood cell is on the order of 10,000 nanometers across. </li></ul><ul><li>In 2 dimensions we could stack about 250,000 components in the same space as a red blood cell. </li></ul><ul><li>If the trends continue as far as 2017, which may be the end-point of “Moore’s Law” we could be looking at a manufactured device the size of a red blood cell with 256,000,000 components. </li></ul><ul><li>If we add the third dimension, that could translate into 65,536,000,000,000,000 components. </li></ul><ul><li>Somewhere along the way, we’re talking about the raw technical capability to produce a rather sophisticated robot small enough to wander around through your body doing whatever it has been programmed to do. </li></ul><ul><li>If we make the robot 1/10,000 th the volume of a red blood cell, we’re still talking about 655,360,000 components, which is arguably perhaps enough to embody this machine with the ability to think, move, and do whatever we have programmed it to do. </li></ul>
  37. 37. The Future <ul><li>What do we need? </li></ul>
  38. 38. The Future <ul><li>What do we need? </li></ul><ul><li>Power Systems </li></ul><ul><li>Locomotion Systems </li></ul><ul><li>Control Systems </li></ul><ul><li>Sensor Systems </li></ul><ul><li>Actuator Systems </li></ul><ul><li>Disposal Systems </li></ul>
  39. 39. The Future <ul><li>Power Systems </li></ul>
  40. 40. The Future <ul><li>Batteries </li></ul>
  41. 41. The Future <ul><li>Thermoelectric </li></ul>
  42. 42. The Future <ul><li>Solar </li></ul>78 atoms – record is 58                                
  43. 43. The Future <ul><li>Steam </li></ul>
  44. 44. The Future <ul><li>Adenosine Triphosphate (ATP) </li></ul><ul><li>Hongyun Wang </li></ul>
  45. 45. The Future <ul><li>Brownian Motors </li></ul>
  46. 46. The Future <ul><li>Locomotion Systems </li></ul>
  47. 47. The Future <ul><li>Legs </li></ul>
  48. 48. The Future <ul><li>Wings </li></ul><ul><li>Dicopomorpha echmepterygis 0.139 mm </li></ul>
  49. 49. The Future <ul><li>Rockets </li></ul><ul><li>TRW </li></ul>
  50. 50. The Future <ul><li>Tails </li></ul>                             
  51. 51. The Future <ul><li>Control Systems </li></ul>
  52. 52. The Future <ul><li>Micro processor </li></ul>
  53. 53. The Future <ul><li>Analog Control </li></ul>
  54. 54. The Future <ul><li>Qubit </li></ul>
  55. 55. The Future <ul><li>Sensor Systems </li></ul>
  56. 56. The Future <ul><li>Vision </li></ul>
  57. 57. The Future <ul><li>Chemical Gradient </li></ul>olfactory nerve fibers from the garfish
  58. 58. The Future <ul><li>Atomic Force </li></ul>
  59. 59. The Future <ul><li>Actuator Systems </li></ul>
  60. 60. The Future <ul><li>Erosion </li></ul>
  61. 61. The Future <ul><li>Genetic </li></ul>
  62. 62. The Future <ul><li>Assembler </li></ul>DNA replication operates at a rate of approximately 180,000 atomic assemblies per second with an error rate that is astonishingly low. The standard mole weighs about 0.012 kilogram (about .4 ounce – ro4 carbon) and contains about 6 X 10 23 atoms. 600,000,000,000,000,000,000,000 atoms. With an assembly rate of 180,000 atoms per second, the high-speed assembler in DNA could make half an ounce of something in about 105,699,306,612 years. If the atoms don’t stick together.
  63. 63. The Future <ul><li>Disposal Systems </li></ul>
  64. 64. The Future <ul><li>Taggant </li></ul>Code: M0929F5 Size: 75-150 microns
  65. 65. The Future <ul><li>Biodegradation </li></ul>
  66. 66. The Future <ul><li>Scavenging </li></ul>
  67. 67. Other Futures computing manufacturing life sciences aerospace and defense
  68. 68. Other Futures computing The Law of Accelerating Returns   Ray Kurzweil
  69. 69. Other Futures manufacturing
  70. 70. Other Futures life sciences Carnegie Mellon           
  71. 71. Other Futures aerospace and defense Grey Goo Blue Goo
  72. 72. Other Futures ? Any sufficiently advanced technology is indistinguishable from magic. - Arthur C. Clark
  73. 73. Thank you [email_address]