Introduction to Nanotechnology: Part 3

2,077 views

Published on

0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,077
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
0
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Introduction to Nanotechnology: Part 3

  1. 1. Basic Nanotechnology Commercial Activity: Part 2
  2. 2. Better Living Through Chemistry <ul><li>People whom I have seen doing cooking </li></ul><ul><li>know nothing of chemistry, </li></ul><ul><li>and the people who know chemistry do not cook </li></ul><ul><li>The conclusion seems to be, if one knows chemistry one must not cook </li></ul><ul><ul><li>-(adapted from) Ellen Henrietta Swallow Richards </li></ul></ul>
  3. 3. Topics <ul><ul><li>Commercial activity 2: materials and industrial chemistry </li></ul></ul><ul><ul><ul><li>Overall state of the sector (size, maturity, growth, evolution of market structure) </li></ul></ul></ul><ul><ul><ul><li>Leading firms, foci </li></ul></ul></ul><ul><ul><ul><li>State of technology, product, and application landscape (what's possible, what's being done, why is it interesting) </li></ul></ul></ul><ul><ul><ul><li>Investment opportunities and strategic considerations for entrants and incumbents </li></ul></ul></ul>
  4. 4. Chemistry Sampler <ul><li>Fuel Cells </li></ul><ul><li>Encapsulation </li></ul><ul><li>Nanoparticles </li></ul><ul><li>Nanocomposites </li></ul><ul><li>Self Assembly </li></ul><ul><li>Surface Chemistry </li></ul>
  5. 5. Fuel Cells <ul><li>2010 global market estimated at $100 billion </li></ul><ul><ul><li>Automotive </li></ul></ul><ul><ul><li>Power Grid </li></ul></ul><ul><ul><li>Battery Replacement </li></ul></ul>Copyright 1996-2002 by Batteries Digest
  6. 6. Fuel Cells <ul><li>Fuel cells consist of an electrolyte material sandwiched between two electrodes </li></ul><ul><li>The input fuel passes over the anode (and oxygen over the cathode) where it catalytically splits into ions and electrons. </li></ul><ul><li>The electrons go through an external circuit to create electricity. </li></ul><ul><li>The ions move through the electrolyte toward the oppositely charged electrode where they combine to create by-products, primarily water and CO2. </li></ul>what is it?
  7. 7. Fuel Cells <ul><li>Proton Exchange Membrane (PEM) </li></ul><ul><li>Direct Methanol (DMFC) </li></ul><ul><li>Solid Oxide Fuel Cells (SOFC) </li></ul><ul><li>Molten Carbonate Fuel Cells (MCFC) </li></ul><ul><li>Alkaline Fuel Cells (AFC) </li></ul><ul><li>Regenerative Fuel Cells (one unit can run as both a fuel cell and electrolyzer) </li></ul><ul><li>Phosphoric Acid Fuel Cells </li></ul><ul><li>Enzymatic Fuel Cell Battery </li></ul><ul><li>Zinc-Air Batteries </li></ul>what kinds are there?
  8. 8. Fuel Cells Where does nanotech come in? Hydrogen atoms are stripped of their electrons at the anode, and the positively charged protons diffuse through one side of the porous membrane and migrate toward the cathode
  9. 9. Fuel Cells <ul><li>Air efficiency 30-60% </li></ul><ul><li>Oxygen efficiency 50-80% </li></ul><ul><li>light weight </li></ul><ul><li>durable </li></ul><ul><li>green </li></ul>Proton Exchange Membrane GE's Russell Hodgdon with a polymer electrolyte in 1965
  10. 10. Fuel Cells - Costs
  11. 11. Fuel Cells - Companies (partial list) <ul><li>Acumentrics Corporation, Massachusetts, USA (SOFC) </li></ul><ul><li>Advanced Measurements Inc., Alberta, CANADA (Fuel Cell Testing Systems) </li></ul><ul><li>Anuvu Incorporated, California, USA (PEM) </li></ul><ul><li>Apollo Energy Systems, Inc., Florida, USA (AFC) </li></ul><ul><li>Arbin Instruments, Texas, USA (Fuel Cell Testing Systems) </li></ul><ul><li>Argonne National Laboratory, Illinois, USA (PEM, MCFC and SOFC) </li></ul><ul><li>Astris Energi, Inc., Mississauga, Ontario, CANADA (AFC) </li></ul><ul><li>Avista Laboratories, Washington, USA (PEM) </li></ul><ul><li>Azienda Energetica Municipale (AEM spa Milano), Milano, ITALY (PAFC) </li></ul><ul><li>Ball Aerospace & Technologies Corp., Colorado, USA </li></ul><ul><li>Ballard Power Systems, Inc., British Columbia, CANADA (PEM) </li></ul><ul><li>BCS Technology, Inc., Texas, USA (PEM) </li></ul><ul><li>Case Western Reserve University, Ernest B. Yeager Center, Ohio, USA (PEM) </li></ul><ul><li>Celsius, Malmo, SWEDEN (PEM) </li></ul><ul><li>Ceramatec, Utah, USA (SOFC) </li></ul><ul><li>Ceramic Fuel Cells Ltd., Victoria, AUSTRALIA (SOFC) </li></ul><ul><li>Consejo Superior de Investigaciones Cientificas, Madrid, SPAIN (PEM, MCFC, SOFC) </li></ul><ul><li>Coval H2 Partners, California, USA (PEM) </li></ul><ul><li>CSIRO Energy Technology, New South Wales, AUSTRALIA </li></ul><ul><li>DAIS Corporation, Florida, USA (PEM) </li></ul><ul><li>DCH Technology, Inc., California, USA (PEM) </li></ul><ul><li>DE NORA s.p.a., ITALY (PEM) </li></ul><ul><li>Desert Research Institute, Nevada, USA (PEM, PAFC) </li></ul><ul><li>Draeger Safety, Colorado, USA (PEM) </li></ul><ul><li>EBARA Ballard Corporation, Tokyo, JAPAN (PEM) </li></ul><ul><li>Electric Power Research Institute, California, USA (PAFC and MCFC) </li></ul><ul><li>Electro-Chem-Technic, Oxford, UNITED KINGDOM (PEM, PAFC) </li></ul><ul><li>ElectroChem, Inc., Massachusetts, USA (PEM) </li></ul><ul><li>Element 1 Power Systems Inc., California, USA </li></ul><ul><li>Elf Atochem North America, Pennsylvania, USA (PEM) </li></ul><ul><li>Emprise Corporation, Georgia, USA </li></ul><ul><li>Energia Ltd., Virginia, USA </li></ul><ul><li>Energy Conversion Devices, Inc., Michigan, USA (RFC) </li></ul><ul><li>Energy Partners, L.C., Florida, USA (PEM) </li></ul><ul><li>Energy Visions Inc., Ottowa, Ontario, CANADA (DMFC) </li></ul><ul><li>Esoro AG, Faellanden, SWITZERLAND (PEM) </li></ul><ul><li>ETH Materials, Zurich, SWITZERLAND (SOFC) </li></ul><ul><li>eVionyx, New York, USA (Metal-Air FC) </li></ul><ul><li>Federal Energy Technology Center, West Virginia, USA (MCFC and SOFC) </li></ul><ul><li>FEV Motorentechnik GmbH, GERMANY (PEM, SOFC) </li></ul><ul><li>Florida Solar Energy Center, Florida, USA (PEM) </li></ul><ul><li>Forschungszentrum Julich, GERMANY (DMFC, SOFC & PEM) </li></ul><ul><li>FuelCell Energy, Connecticut, USA (DFC) </li></ul><ul><li>Fuel Cell Resources Inc. - Georgia, USA (PEM membranes) </li></ul><ul><li>Fuel Cell Systems - West Sussex, UNITED KINGDOM (AFC) </li></ul><ul><li>Fuel Cell Technologies, Ltd., Ontario, CANADA </li></ul><ul><li>Gas Technology Institute, Illinois, USA (MCFC, PAFC, , PEM and SOFC) </li></ul><ul><li>Gaskatel GmbH, Kassel, GERMANY (AFC & PEM) </li></ul><ul><li>Gaz De France, La Plaine, FRANCE (PAFC, PEMFC, SOFC) </li></ul><ul><li>GE Energy and Environmental Research Corp., California, USA (PEM, MCFC, SOFC) </li></ul><ul><li>Global Thermoelectric Inc., CANADA (SOFC) </li></ul><ul><li>Greenlight Power Technologies, CANADA (Fuel Cell Testing Systems) </li></ul><ul><li>GreenVolt Power Corporation, CANADA (AFC) </li></ul><ul><li>H Power, New Jersey, USA (PEM) </li></ul><ul><li>Hitachi Works, Ibaraki, JAPAN (MCFC) </li></ul><ul><li>Hoku Scientific, Hawaii, USA (PEM) </li></ul><ul><li>HTceramix - Lausanne, SWITZERLAND (SOFC) </li></ul><ul><li>H-Tec - Wasserstoff-Energie-Systeme GmbH, Luebeck, GERMANY (PEM) </li></ul><ul><li>Hydro Quebec Research Institute, Quebec, CANADA </li></ul><ul><li>Hydrocell U.K., UNITED KINGDOM (AFC, PEM) </li></ul><ul><li>Hydrogenics Corporation, Toronto, CANADA </li></ul><ul><li>Hydrovolt Energy Systems, California, USA (SOFC) </li></ul><ul><li>ICP-CSIC, Madrid, SPAIN </li></ul><ul><li>ICTP-CSIC, Madrid, SPAIN (PEM) </li></ul>
  12. 12. Fuel Cells & Nanotech <ul><li>More efficient proton exchange </li></ul><ul><li>Higher density hydrogen (fuel) storage </li></ul><ul><li>lower cost ????? </li></ul>
  13. 13. Fuel Cells Companies to Watch <ul><li>Ballard Power Systems </li></ul><ul><li>General Motors </li></ul><ul><li>Hitachi </li></ul><ul><li>Honeywell </li></ul><ul><li>Mitsubishi </li></ul><ul><li>Motorola </li></ul><ul><li>NEC </li></ul><ul><li>Seimens AG </li></ul><ul><li>Sony </li></ul>
  14. 14. Encapsulation Embedding molecules within molecules Physical Review Letters, Dec 18. 2000 A single gadolinium atom encapsulated in a gadolinium fullerene, encapsulated in a single-wall carbon nanotube
  15. 15. Encapsulation - samples Insect control polymer microencapsulation processes that permit controlled release of pheromone to suppress insect mating Harald D.H. Stöver, McMaster University
  16. 16. Encapsulation - market/players <ul><li>Not distinct enough at this time to be a market segment </li></ul><ul><li>Value unknown, could be “large” </li></ul>
  17. 17. Nanoparticles <ul><li>Sun screen </li></ul><ul><li>Catalysts (automotive) </li></ul><ul><li>Corrosion resistance </li></ul><ul><li>Solar conversion </li></ul>
  18. 18. Nanoparticles Richard Brotzman Nanophase Technologies Corporation
  19. 19. Nanoparticles <ul><li>Properties </li></ul><ul><li>optical </li></ul><ul><li>chemical </li></ul><ul><li>mechanical </li></ul><ul><li>electronic </li></ul><ul><li>electromagnetic </li></ul>
  20. 20. Nanoparticles Optical The interaction of electromagnetic fields with subwavelength structures. SOEs (subwavelength optical elements) Reflection, refraction, diffraction and interference describe the behavior of traditional optical elements. With SOEs the equations describing optical behavior must include quantum-mechanical effects.
  21. 21. Nanoparticles <ul><li>Optical </li></ul><ul><li>Applications include: </li></ul><ul><ul><li>fiber amplifiers </li></ul></ul><ul><ul><li>beam splitters </li></ul></ul><ul><ul><li>circulators and isolators </li></ul></ul><ul><ul><li>interleavers </li></ul></ul><ul><ul><li>optical switches </li></ul></ul><ul><ul><li>variable optical attenuators </li></ul></ul><ul><li>Future Applications include: </li></ul><ul><ul><li>polarizers </li></ul></ul><ul><ul><li>polarization beam splitters/combiners </li></ul></ul><ul><ul><li>filters </li></ul></ul><ul><ul><li>photodetectors </li></ul></ul><ul><ul><li>photonic bandgap devices </li></ul></ul><ul><ul><li>dynamic control for switching, attenuation and tuning </li></ul></ul>
  22. 22. Nanoparticles Optical Market Potential > 1.1 Billion by 2004 through replacement & new products Biotech component estimated at $150 million by 2005 No dominant players watch Nanophase Technologies Corporation
  23. 23. Nanoparticles Chemical - sieve magnetic nanospheres With no magnetic field, the nanoparticles float about in a liquid. When a magnetic field is applied, the particles line up following the field lines, and form rigid “columns” creating a regular array of obstacles. This creates a sieve which separates biological molecules based on size.
  24. 24. Nanoparticles Chemical - reaction control 1. Select a particle size 2. Select an electrostatic property 3. Select a particle density 4. Select interaction medium You now have a tunable chemical reaction control system Binding energies Eb of single hydrogen) atom adsorped on the flat and sharp regions of a (8,0) nanotube versus elliptical deformation Taner Yildirim NIST Center for Neutron Research
  25. 25. Nanoparticles <ul><li>Paper </li></ul><ul><ul><li>Improved coating hold out </li></ul></ul><ul><ul><li>Improved print quality </li></ul></ul><ul><ul><li>More uniformly hydrophobic sheet surface </li></ul></ul><ul><ul><li>Option to modify sheet surface coefficient of friction </li></ul></ul><ul><ul><li>Reduced linting and dusting on offset grades </li></ul></ul>David Osby, EKA Chemicals Inc.
  26. 26. Nanoparticles <ul><li>Market Size </li></ul><ul><ul><li>The total market size is estimated at $14 billion </li></ul></ul><ul><ul><li>- Evolution Capital, Dec 2001 </li></ul></ul><ul><ul><li>Or $9.2 billion in inorganic/ceramics/metal oxides/etc. </li></ul></ul><ul><ul><li>- IoN/NPL Nanotechnology Report Oct 2001 </li></ul></ul>
  27. 27. Nanocomposites <ul><li>Nanomaterials often have different properties than their bulk-scale counterparts </li></ul><ul><ul><li>- nanocrystalline copper is five times harder than ordinary copper </li></ul></ul><ul><li>Nanocomposites are materials where the constituents are mixed on a nanometer scale </li></ul><ul><ul><li>- A nanoscale dispersion of sheet-like inorganic silicate particles in a polymer matrix is superior to either constituent in such properties as optical clarity, strength, stiffness, thermal stability, reduced permeability, and flame retardancy. </li></ul></ul><ul><li>Abalone shell has alternating layers of calcium carbonate and a rubbery biopolymer. It is twice as hard and a thousand times tougher than its components. </li></ul>
  28. 28. Nanocomposites Types plastics foams aerogels powders membranes coatings films catalysts semiconductors magnets etc. T/J Technologies, Inc.
  29. 29. Nanocomposites <ul><li>Market </li></ul><ul><li>$1.2 billion in 2009 </li></ul><ul><ul><ul><li>- Principia Partners </li></ul></ul></ul>
  30. 30. Self Assembly coordinated action of independent entities under distributed (i.e., non-central) control to produce a larger structure or to achieve a desired group effect
  31. 31. Self Assembly The Holy Grail of Electronics Moore’s 1st law Moore’s 2nd law Complexity Doubles every 18 months Factory Costs Double every 18 months
  32. 32. Self Assembly The Holy Grail of Electronics The basic idea of self-assembly is to use natural forces to form a device feature, although its position may be determined by coarser lithography. Thus, the less-expensive equipment associated with a previous technology generation may be used, along with self-assembly techniques, to fabricate circuits for the next generation of devices. Alternatively, self-assembly can be used to form structures for molecular electronics. A single molecular monolayer (or a controlled number of monolayers) can be routinely formed on a substrate by techniques such as Langmuir-Blodgett deposition.
  33. 33. Self Assembly How? A Langmuir-Blodgett film is a set of monolayers, or layers of organic material one molecule thick, deposited on a solid substrate. It can consist of a single layer or many, up to a depth of several visible-light wavelengths.
  34. 34. Self Assembly Making What?
  35. 35. Self Assembly
  36. 36. Self Assembly
  37. 37. Self Assembly
  38. 38. Self Assembly <ul><li>Other Self Assembly Areas </li></ul><ul><li>Regular structured devices (optics) </li></ul><ul><li>Nanocomposite fabrication </li></ul><ul><li>Chemical sensors </li></ul><ul><li>Wiring matricies (high density RAM) </li></ul><ul><li>Chemical reactors </li></ul><ul><li>Modular positioners </li></ul><ul><li>Light-emitting diodes </li></ul><ul><li>Optical storage materials </li></ul><ul><li>Biosensors </li></ul><ul><li>Drug-delivery materials </li></ul>
  39. 39. Self Assembly <ul><li>Market </li></ul><ul><li>replacement technologies: > $100 billion </li></ul><ul><li>new technologies: large </li></ul>
  40. 40. Surface Chemistry Materials interact with their environments through surfaces and interfaces. A surface is a stable platform from which reactions can be studied or controlled.
  41. 41. Surface Chemistry <ul><li>Chemistry </li></ul><ul><ul><li>Adhesives </li></ul></ul><ul><ul><li>Film </li></ul></ul><ul><ul><li>Paint </li></ul></ul><ul><ul><li>Sun Screen </li></ul></ul><ul><ul><li>Soap </li></ul></ul><ul><ul><li>Coatings </li></ul></ul><ul><ul><li>Lubrication & wear </li></ul></ul><ul><ul><li>Medical devices </li></ul></ul><ul><li>Catalysts </li></ul><ul><ul><li>polymers (plastics) </li></ul></ul><ul><ul><li>methanol </li></ul></ul><ul><ul><li>ammonia </li></ul></ul><ul><ul><li>hydrogen </li></ul></ul><ul><ul><li>carbon monoxide </li></ul></ul><ul><ul><li>fertilizers </li></ul></ul><ul><ul><li>pharmaceuticals </li></ul></ul><ul><ul><li>gasoline </li></ul></ul>
  42. 42. Surface Chemistry <ul><li>Market </li></ul><ul><li>Indirectly influences material production valued in excess of $550 billion/year. </li></ul><ul><ul><li>Petroleum Chemicals </li></ul></ul><ul><ul><li>Exxon BASF </li></ul></ul><ul><ul><li>BP DuPont </li></ul></ul><ul><ul><li>Royal Dutch/Shell Dow </li></ul></ul><ul><ul><li>ChevronTexaco Bayer </li></ul></ul><ul><ul><li>Total Fina Elf Degussa </li></ul></ul>
  43. 43. Surface Chemistry Surface Area 4 pi r 2 6 a 2 pi r 2 a 2 < 
  44. 44. Surface Chemistry A Fractal Capacitor
  45. 45. Break
  46. 46. Basic Nanotechnology Commercial Activity
  47. 47. Brains <ul><li>If the automobile had followed the same development cycle as the computer </li></ul><ul><li>a Rolls-Royce would today cost $100 </li></ul><ul><li>get a million miles per gallon </li></ul><ul><li>and explode once a year, killing everyone inside. </li></ul><ul><li>- Robert X. Cringely </li></ul>
  48. 48. Brains 875 Abacus
  49. 49. Brains 1600 Slide Rule - Oughtred
  50. 50. Brains 1822 multi function calculator - Babbage
  51. 51. Brains 1946 ENIAC - U.S. Army
  52. 52. Brains 1971 Microprocessor Intel
  53. 53. Brains 2000 Pentium IV Intel
  54. 54. Brains 100 million to 100 billion MIPS Moore's law predicts that the upper-end estimate of the human brain's processing power will be reached before 2017
  55. 55. Brains Statistically speaking, x x x x x x The vast majority of life on this planet does not have a brain… x x x x x x The remainder doesn’t use the one they have.
  56. 56. Brains Nanoscale devices Quantum computing
  57. 57. Nanoscale devices
  58. 58. Nanoscale devices Copyright Cees Dekker, 1997 Intel 20 nm transistor T.U. Delft: <1 nm SWCNT transistor
  59. 59. Nanoscale devices Copyright Ron Reifenberger, 1997
  60. 60. Nanoscale devices Matrix Semiconductor
  61. 61. Nanoscale devices
  62. 62. Nanoscale devices
  63. 63. Nanoscale devices
  64. 64. Nanoscale devices
  65. 65. Nanoscale devices Current Storage Density is 10,000,000,000 bits/inch 2 Current requirement for one bit = 100 atoms Theoretical Storage Density may be 1,000 times higher. Cubic storage density could be: 100,000,000,000,000,000,000 bits/inch 3
  66. 66. IBM Millipede 200,000,000,000 bits/inch 2 10 nm
  67. 67. Nanoscale devices As devices become smaller, quantum effects tend to become more important A single-electron transistor According to classical physics, there is no way that electrons can get from the 'source' to the 'drain', because of the two barrier walls either side of the 'island'. However, the structure is so small that quantum effects occur, and one electron at a time can tunnel through the barriers.
  68. 68. Nanoscale devices Market = Current computer market > $100 billion / year Target companies: The usual suspects
  69. 69. Quantum computing A classical bit can store either a 1 or a 0 Quantum physics states that when we measure the spin 1/2 particles state we will determine that it is in the +1/2 state, or the -1/2 spin state. In this manner our qubit is not different from a classical bit, for it can be measured to be in the +1/2 , or 1 state, or the -1/2 , or 0 state. Spin is a vector - It has length It has direction
  70. 70. Quantum computing A quantum bit can have an arbitrary number of states.
  71. 71. Quantum computing A quantum particle can exist in two states at the same time - a coherent superposition This means that the particle is both in state 0 and state 1
  72. 72. Quantum computing Which results in means you don’t know its state until you measure it One atom : process is totally random, so you can't decide if a one-atom cat is alive or dead without measuring it Few atoms (2-20): process becomes steadily more predictable Many atoms (a complete cat): constitutes an independent measuring system, so the cat measures it's own deadness
  73. 73. Quantum computing <ul><li>So if you could have a quantum computer where the input and output is represented by 0 s and 1 s </li></ul><ul><li>All possible combinations could exist simultaneously </li></ul><ul><li>Which means you could have a massively parallel computer that produces the answers in one clock cycle </li></ul>Which means a qubit is both 0 and 1 until measured
  74. 74. Quantum computing How much sci-fi is it? IBM Delft Confinement of electrons to quantum corrals on a metal surface
  75. 75. Quantum computing <ul><li>POWER? </li></ul><ul><ul><li>Searching the entire web (8 trillion bytes of data) for a keyword would take a month using a classical computer. </li></ul></ul><ul><ul><li>Such a search might take less than half an hour on a quantum computer. </li></ul></ul><ul><li>WHEN? </li></ul><ul><ul><li>As things stand, no quantum computer has been built, nor looks likely to be built in (my) lifetime. </li></ul></ul><ul><ul><li>- Andrew Steane </li></ul></ul><ul><li>Department of Atomic and Laser Physics </li></ul><ul><li>Clarendon Laboratory, Oxford University </li></ul><ul><li>MARKET? </li></ul>
  76. 76. Break
  77. 77. Basic Nanotechnology Commercial Activity
  78. 78. Power <ul><li>Irrigation of the land with seawater desalinated by fusion power </li></ul><ul><li>is ancient. </li></ul><ul><li>It's called 'rain'. </li></ul><ul><li>-Michael McClary </li></ul>
  79. 79. Power & Energy <ul><li>Creation </li></ul><ul><li>Storage </li></ul><ul><li>Transmission </li></ul>
  80. 80. Power & Energy <ul><li>Examples: </li></ul><ul><ul><li>Solar </li></ul></ul>
  81. 81. Power & Energy <ul><li>Creation - Solar </li></ul>5-28% efficiency 80% efficiency
  82. 82. Power & Energy <ul><li>Creation - Solar </li></ul> 1 nanometer 
  83. 83. Power & Energy <ul><li>Creation - Solar </li></ul>Brudvig Lab, Yale
  84. 84. Power & Energy <ul><li>Creation - Solar </li></ul>
  85. 85. Power & Energy <ul><li>Chlorophyll Voltaic Cell </li></ul>
  86. 86. Power & Energy <ul><li>Chlorophyll Voltaic Cell </li></ul><ul><li>When the porphyrin (antennae) absorbs light, it donates an electron to the fullerene. </li></ul>
  87. 87. Power & Energy <ul><li>Dye Sensitized Solar Cell </li></ul>
  88. 88. Power & Energy <ul><li>Solar Cell usage: > 3 Billion/year </li></ul>
  89. 89. Power & Energy <ul><li>Iowa Thin Film Technologies, Inc. -- Boone, IA -- Mfr. Of Flexible, Lightweight, Non-Fragile Solar Cells. Supporting OEM Applications. </li></ul><ul><li>BP Solar -- Linthicum, MD -- Mfr. Of Photovoltaic (PV) Products. With 5 Different PV-Technologies, Supplying Products To Turn Sunlight Into Electricity... </li></ul><ul><li>ABCO - Atlantic Distribution Network -- Flushing, NY -- Dealers, Dist., Packaging. Specializing In Small Quantities </li></ul><ul><li>Ebara Solar, Inc. -- Belle Vernon, PA </li></ul><ul><li>Southwest Photovoltaic Systems Inc. -- Tomball, TX -- Solar Energy Equipment, Supplies & Custom Designed Turnkey Solar Power (PV) Systems For Remote Power Applications Worldwide </li></ul><ul><li>PerkinElmer OptoElectronics -- Santa Clara, CA </li></ul><ul><li>Huygen Corp. -- Wauconda, IL -- Test Instruments For Pulp & Paper, Chemicals, Plastics & Power Industries </li></ul><ul><li>Solar Electric Specialties Div., Applied Power Corp. -- Willits, CA -- Mfr. / Dist. Photovoltaic Power Systems & Related Components, System Integration </li></ul><ul><li>Solar World Div., Colorado Instruments, Inc. -- Colorado Springs, CO </li></ul><ul><li>Solar Converters Inc. -- Guelph, ON </li></ul><ul><li>AstroPower, Inc. -- Newark, DE -- Mfr. & Supplier Of High Efficiency Solar Electric Photovoltaic Cells </li></ul><ul><li>Optoelectronics, Textron -- Petaluma, CA -- Infrared </li></ul><ul><li>Infineon Technologies, Inc., Optoelectronics Div. -- Cupertino, CA -- Optoelectronic Components, Lamps, Optocouplers, Displays, IR Emitters, Photodetectors </li></ul><ul><li>Spire Corp. -- Bedford, MA -- Thermophotovoltaic </li></ul><ul><li>United Solar Systems Corp. -- Troy, MI -- Solar Energy (Photovoltaic) Equipment & Systems </li></ul><ul><li>Siemens Power Corp., Siemens Solar Industries -- Camarillo, CA </li></ul><ul><li>Midnight Sun Energy -- Yellowknife, NT </li></ul><ul><li>Northern Communication & Navigation Systems -- Yellowknife, NT </li></ul><ul><li>EG & G, Inc. (Corporate) -- Wellesley, MA </li></ul><ul><li>International Energy Systems Corp. -- Barrington, IL </li></ul><ul><li>East Texas Integrated Circuits, Inc. -- Richardson, TX -- Manufacture Of Numerous Bipolar Integrated Circuits For Optical Sensing Applications </li></ul><ul><li>Silonex, Inc. -- Montreal, QC </li></ul><ul><li>Centro Vision Inc. -- Newbury Park, CA </li></ul>
  90. 90. Power & Energy - Storage <ul><li>Examples: </li></ul><ul><ul><li>batteries </li></ul></ul><ul><ul><li>volatiles </li></ul></ul>
  91. 91. Power & Energy - Storage Batteries All batteries consist of two electrodes, an anode and a cathode, and an electrolyte solution. The tendency for Zn to loose electron is stronger than that for copper. When the two cells are connected by a salt bridge and an electric conductor form a closed circuit for electrons and ions to flow, copper ions actually gains electron to become copper metal.
  92. 92. Power & Energy - Storage Batteries If you can create both nano-anodes and nano-cathodes, then these electrodes are as much as 100 times more powerful than traditional ones. University of Florida
  93. 93. Power & Energy - Storage Nuclear Batteries <ul><li>Americium 241 </li></ul><ul><li>half life of 432 years </li></ul><ul><li>$1,500 per gram </li></ul><ul><li>James P. Blanchard </li></ul><ul><li>Amit Lal </li></ul><ul><ul><li>- U of Wisc </li></ul></ul>
  94. 94. Power & Energy - Storage Batteries Market $15 Billion per year Growing Fast
  95. 95. Power & Energy - Storage Capacitors Two electric plates are separated by an insulating material (plastic, glass, air...) These two plates are connected to two leads that allow the current to flow in and out of the capacitor. As the current flows, electrons build up on one plate. At the same time, electrons flow out of the other plate. Eventually, the capacitor is completely &quot;charged up&quot; and no more current will flow. There is a positive charge on one plate and a negative charge on the other plate. Energy can be released if the leads are shorted
  96. 96. Power & Energy - Storage Capacitors If you can increase the total surface area of the the two plates, your energy storage increases. Composite nanotube Japan Science & Technology Corporation
  97. 97. Power & Energy - Storage Capacitors ~ $2 Billion/year
  98. 98. Power & Energy - Storage
  99. 99. Power & Energy - Storage Hydrogen A hydrogen gas tank that contained energy equivalent to a gasoline tank would be more than 3,000 times bigger than the gasoline tank.
  100. 100. Power & Energy - Storage $1.00-$2.00/lb Hydrogen burns 50% more efficiently than gasoline, and burning hydrogen creates less air pollution
  101. 101. Power & Energy - Storage Hydrogen 52,000 Btu per pound To liquify one pound of hydrogen requires 5 kWh of electrical energy
  102. 102. Power & Energy - Storage Hydrogen Carbon nanotubes are capable of storing anywhere from 4.2% - to 65% of their own weight in hydrogen Gas-on-Solid Adsorption Adsorption of hydrogen molecules on activated carbon has been extensively studied. The amount of hydrogen stored can approach the storage density of liquid hydrogen at low temperatures (i.e., liquid nitrogen). Carbon-based hydrogen storage materials that can store significant amounts of hydrogen at room temperature are under investigation.
  103. 103. Power & Energy - Storage Carbon Scolls - 2630 m 2 /g Lisa M. Viculis, Julia J. Mack, Richard B. Kaner
  104. 104. Power & Energy - Storage Market Value > $876,000,000,000/year
  105. 105. Power & Energy - Transmission 3.8 Trillion Kilowatt-hours 5% - 10% lost in transmission 200 Billion Kilowatt-hours lost =~ waste of > 300 coal fired plants/year
  106. 106. Power & Energy - Transmission Nanocrystaline materials New transmission materials Superconductors
  107. 107. Power & Energy - Transmission Superconductors An element or compound that will conduct electricity without resistance. D. J. Bishop, Kent State
  108. 108. Power & Energy - Transmission Superconductors Current is carried by pairs of electrons - Cooper pairs The binding energy of the pair opens a gap in the energy spectrum at E f (the Fermi energy - the highest occupied level in a solid), which separates the pair states from the &quot;normal&quot; single electron states. The size of a Cooper pair is given by the coherence length which is typically 1000Å. The space occupied by one pair contains many other pairs. There is interdependence of the occupancy of the pair states. At low temperatures there is insufficient thermal energy to scatter the pairs, thus they carry current unimpeded. Superconductors.ORG and Ian Grant.
  109. 109. Power & Energy - Transmission A. Bollinger and A. Bezryadin University of Illinois at Urbana-Champaign MoGe 8 nm
  110. 110. End of Part 3

×