Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling

Giuseppe Masetti
Giuseppe MasettiResearch Faculty at CCOM/JHC, UNH
Bathymetric and Reflectivity-derived Data Fusion
for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
G. Masetti, L.A. Mayer, L.G. Ward, D. Sowers
BACKSCATTER PROCESSING
Data Acquisition Pre-Processing Analysis
2
RAW PRE ARA
GEOCODER
3
ARA
MOS
RAW PRE
Ref.: Fonseca, L., and Mayer, L.A., Remote estimation of surficial seafloor properties through the application of
Angular Range Analysis to multibeam sonar data, Mar. Geophysical Res., 28 (2), p. 119-126, 2007.
4
ARA
MOS
RAW PRE
GEOCODER
Ref.: Fonseca, L., and Mayer, L.A., Remote estimation of surficial seafloor properties through the application of
Angular Range Analysis to multibeam sonar data, Mar. Geophysical Res., 28 (2), p. 119-126, 2007.
A framework of
libraries and tools
for Ocean Mapping
5
Quickly prototype
and test
innovative ideas
Ease the transition
from research to
operation
Ref.: G. Masetti, Wilson, M. J., Calder, B. R., Gallagher, B., and Zhang, C., “Research-driven Tools for Ocean Mappers”, Hydro Int., vol. 21, 5. GeoMares, 2017.
6
OCS-UNH CO-DEVELOPMENT
Sound Speed Manager
▪ Manage sound speed casts.
▪ Adopted by UNOLS vessels (MAC)
and many others.
▪ Modified to fit NOAA Coast Survey
needs.
▪ ARA’s pro: Absorption Coefficient.
7Ref.: G. Masetti, Gallagher, B., Calder, B. R., Zhang, C., and Wilson, M. J., “Sound Speed Manager”, Int. Hydr. Review, vol. 17. IHB, pp. 31-40, 2017.
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Survey Data Monitor
▪ Merge ideas from:
▫ Manda’s svplot
▫ Wilson’s CastTime
▪ Leverage:
▫ SSM database
▫ SSM-SIS interaction
11
Survey Data Monitor & Cast Timing
12
1490 1535
0
4
16
8
12
0 10 20 30 40
Comparing the simulated seafloors is an estimate of sounding depth bias
Sound Speed (m/s)
Depth(m)
Horizontal Range (m)
1505 1520
Δd
SmartMap
▪ Effects of oceanographic
variability on mapping surveys
▪ Two components:
▫ C++ & Python
▫ GeoServer and OGC services
▪ WebGIS:
▫ www.hydroffice.org/smartmap/
13Ref.: G. Masetti, Kelley, J., Johnson, P., and Beaudoin, J., “A Ray-Tracing Uncertainty Estimation Tool for Ocean Mapping”, IEEE Access. IEEE, pp. 1-9, 2017.
SmartMap WebGIS
▪ RTOFS +
WOA13
▪ Animation
▪ Past data
▪ Survey
Planner
14
15
StormFix
ARTIFACTS
DETECTION
ARTIFACTS
REDUCTION
BACKSCATTER
MOSAICKING
ANGULAR
RESPONSE
ANALYSIS
Ref.: G. Masetti et al., “How to Improve the Quality and the Reproducibility for Acoustic Seafloor Characterization”, GeoHab 2017. p. Nova Scotia, Canada, 2017.
StormFix: How it works?
18
19
20
21
Just Removal vs Randomization Schema
QC Tools
▪ Automate QC for Survey Review and
Chart Compilation:
▫ Convert best practices and specs
into code.
▫ Familiarize new personnel to specs.
▪ Routinely used by NOAA OCS.
▪ Improved productivity of the ping-
to-chart workflow.
22Ref.: M. J. Wilson, Masetti, G., and Calder, B. R., “Automated Tools to Improve the Ping-to-Chart Workflow”, Int. Hydr. Review, vol. 17. IHB, pp. 21-30, 2017.
QC Tools & Grid Anomalies
▪ ARA’s pro: Artifacts reduction. 23
HYDROFFICE APPS
24
PYTHON SCIENTIFIC STACK
OCEAN MAPPING LIBS
& SCRIPTS
Distribution
Pydro Universe Stand-alone Apps Python Packages
NOAA website www.hydroffice.org GitHub/PyPi/Conda
25
26
ARA
MOS
PRE
GEOCODER
27Ref.: Fonseca, L. et al., “Angular range analysis of acoustic themes from Stanton Banks Ireland”, Applied Acoustics, vol. 70. pp. 1298-1304, 2009.
Bress
▪ Preliminary segmentation
from co-located DEMs and
backscatter mosaics
▪ Based on principles of:
▫ Topographic openness
▫ Pattern recognition
▫ Texture classification
28Ref.: G. Masetti, Mayer, L. A., and Ward, L. G., “A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation”, Geosciences, vol. 8(1). MDPI, 2018.
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
- + 0 1 2 3 4 5 6 7 8
0
1 -
2 - -
3 - - -
4 - - - -
5 - - - - -
6 - - - - - -
7 - - - - - - -
8 - - - - - - - -
Ref.: J. Jasiewicz, T.F. Stepinski, “Geomorphons—a pattern recognition approach to classification and mapping of landforms”, Geomorphology, 182, pp.147–156, 2013.
FL FL FL FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL SL SL
FS FS FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS
FL FL FL FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL SL SL
FS FS FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS
FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS
VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling
39
Landform ClassificationLocal Ternary Patterns
40
Output SegmentsArea Kernels
41
42
43
Different Criteria:
• Given a fixed number of
samples, locations with
largest coverage?
• How many samples to
obtain a given percentage
of coverage?
• What are the more
“meaningful” locations
for bottom sampling?
???
44
ARA
MOS
GEOCODER
DTM
BRESS
45
46
47
48
49
50
51
52
CONCLUSIONS
53
• Output segments preserve physical intuition:
• Same landform type
• Similar reflectivity texture
• Preliminary segmentation is a building block for:
• Theme-based seafloor characterization
• Strategic bottom sampling
• Habitat modeling (WIP)
THANKS!
Any questions?
Visit: https://www.hydroffice.org
You can contact me at: gmasetti@ccom.unh.edu
1 of 54

Recommended

Constructing Semantic Gazetteers: Managing GeoSpatial Vocabularies Using Open... by
Constructing Semantic Gazetteers: Managing GeoSpatial Vocabularies Using Open...Constructing Semantic Gazetteers: Managing GeoSpatial Vocabularies Using Open...
Constructing Semantic Gazetteers: Managing GeoSpatial Vocabularies Using Open...Stephane Fellah
1.1K views43 slides
Large-Scale Inference in Time Domain Astrophysics by
Large-Scale Inference in Time Domain AstrophysicsLarge-Scale Inference in Time Domain Astrophysics
Large-Scale Inference in Time Domain AstrophysicsJoshua Bloom
1.7K views35 slides
Mark Jessell - Assessing and mitigating uncertainty in 3D geological models i... by
Mark Jessell - Assessing and mitigating uncertainty in 3D geological models i...Mark Jessell - Assessing and mitigating uncertainty in 3D geological models i...
Mark Jessell - Assessing and mitigating uncertainty in 3D geological models i...The University of Western Australia
508 views65 slides
Karlov_GSA_OSL_FinalPresentation by
Karlov_GSA_OSL_FinalPresentation Karlov_GSA_OSL_FinalPresentation
Karlov_GSA_OSL_FinalPresentation Rachel Karlov
135 views1 slide
From creekology to rocket science the evolution of remote sensing gis in oilg... by
From creekology to rocket science the evolution of remote sensing gis in oilg...From creekology to rocket science the evolution of remote sensing gis in oilg...
From creekology to rocket science the evolution of remote sensing gis in oilg...Texas Natural Resources Information System
997 views193 slides
well logging tools and exercise_dileep p allavarapu by
well logging tools and exercise_dileep p allavarapuwell logging tools and exercise_dileep p allavarapu
well logging tools and exercise_dileep p allavarapuknigh7
11.2K views46 slides

More Related Content

More from Giuseppe Masetti

Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo... by
Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...
Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...Giuseppe Masetti
1.3K views13 slides
e-learning Python for Ocean Mapping - Empowering the next generation of ocean... by
e-learning Python for Ocean Mapping - Empowering the next generation of ocean...e-learning Python for Ocean Mapping - Empowering the next generation of ocean...
e-learning Python for Ocean Mapping - Empowering the next generation of ocean...Giuseppe Masetti
3.1K views21 slides
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ... by
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...Giuseppe Masetti
71.7K views23 slides
ePOM - Fundamentals of Research Software Development - Code Version Control by
ePOM - Fundamentals of Research Software Development - Code Version ControlePOM - Fundamentals of Research Software Development - Code Version Control
ePOM - Fundamentals of Research Software Development - Code Version ControlGiuseppe Masetti
3.5K views60 slides
ePOM - Fundamentals of Research Software Development - Integrated Development... by
ePOM - Fundamentals of Research Software Development - Integrated Development...ePOM - Fundamentals of Research Software Development - Integrated Development...
ePOM - Fundamentals of Research Software Development - Integrated Development...Giuseppe Masetti
3.5K views46 slides
ePOM - Fundamentals of Research Software Development - Introduction by
ePOM - Fundamentals of Research Software Development - IntroductionePOM - Fundamentals of Research Software Development - Introduction
ePOM - Fundamentals of Research Software Development - IntroductionGiuseppe Masetti
3.5K views34 slides

More from Giuseppe Masetti(20)

Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo... by Giuseppe Masetti
Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...
Open Backscatter Toolchain (OpenBST) Project - A Community-vetted Workflow fo...
Giuseppe Masetti1.3K views
e-learning Python for Ocean Mapping - Empowering the next generation of ocean... by Giuseppe Masetti
e-learning Python for Ocean Mapping - Empowering the next generation of ocean...e-learning Python for Ocean Mapping - Empowering the next generation of ocean...
e-learning Python for Ocean Mapping - Empowering the next generation of ocean...
Giuseppe Masetti3.1K views
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ... by Giuseppe Masetti
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...
Leveraging Predictions from NOAA’s Oceanographic Forecast Models to Increase ...
Giuseppe Masetti71.7K views
ePOM - Fundamentals of Research Software Development - Code Version Control by Giuseppe Masetti
ePOM - Fundamentals of Research Software Development - Code Version ControlePOM - Fundamentals of Research Software Development - Code Version Control
ePOM - Fundamentals of Research Software Development - Code Version Control
Giuseppe Masetti3.5K views
ePOM - Fundamentals of Research Software Development - Integrated Development... by Giuseppe Masetti
ePOM - Fundamentals of Research Software Development - Integrated Development...ePOM - Fundamentals of Research Software Development - Integrated Development...
ePOM - Fundamentals of Research Software Development - Integrated Development...
Giuseppe Masetti3.5K views
ePOM - Fundamentals of Research Software Development - Introduction by Giuseppe Masetti
ePOM - Fundamentals of Research Software Development - IntroductionePOM - Fundamentals of Research Software Development - Introduction
ePOM - Fundamentals of Research Software Development - Introduction
Giuseppe Masetti3.5K views
ePOM - Intro to Ocean Data Science - Raster and Vector Data Formats by Giuseppe Masetti
ePOM - Intro to Ocean Data Science - Raster and Vector Data FormatsePOM - Intro to Ocean Data Science - Raster and Vector Data Formats
ePOM - Intro to Ocean Data Science - Raster and Vector Data Formats
Giuseppe Masetti4K views
ePOM - Intro to Ocean Data Science - Scientific Computing by Giuseppe Masetti
ePOM - Intro to Ocean Data Science - Scientific ComputingePOM - Intro to Ocean Data Science - Scientific Computing
ePOM - Intro to Ocean Data Science - Scientific Computing
Giuseppe Masetti3.9K views
ePOM - Intro to Ocean Data Science - Data Visualization by Giuseppe Masetti
ePOM - Intro to Ocean Data Science - Data VisualizationePOM - Intro to Ocean Data Science - Data Visualization
ePOM - Intro to Ocean Data Science - Data Visualization
Giuseppe Masetti4K views
ePOM - Intro to Ocean Data Science - Object-Oriented Programming by Giuseppe Masetti
ePOM - Intro to Ocean Data Science - Object-Oriented ProgrammingePOM - Intro to Ocean Data Science - Object-Oriented Programming
ePOM - Intro to Ocean Data Science - Object-Oriented Programming
Giuseppe Masetti4K views
AusSeabed workshop - Pydro and Hydroffice - Days 2 and 3 by Giuseppe Masetti
AusSeabed workshop - Pydro and Hydroffice - Days 2 and 3AusSeabed workshop - Pydro and Hydroffice - Days 2 and 3
AusSeabed workshop - Pydro and Hydroffice - Days 2 and 3
Giuseppe Masetti16.8K views
AusSeabed workshop - Pydro and Hydroffice - Day 1 by Giuseppe Masetti
AusSeabed workshop - Pydro and Hydroffice - Day 1AusSeabed workshop - Pydro and Hydroffice - Day 1
AusSeabed workshop - Pydro and Hydroffice - Day 1
Giuseppe Masetti16.7K views
Hydrographic Survey Validation and Chart Adequacy Assessment Using Automated ... by Giuseppe Masetti
Hydrographic Survey Validation and Chart Adequacy Assessment Using Automated ...Hydrographic Survey Validation and Chart Adequacy Assessment Using Automated ...
Hydrographic Survey Validation and Chart Adequacy Assessment Using Automated ...
Giuseppe Masetti142.5K views
The Open Backscatter Toolchain (OpenBST) project: towards an open-source and ... by Giuseppe Masetti
The Open Backscatter Toolchain (OpenBST) project: towards an open-source and ...The Open Backscatter Toolchain (OpenBST) project: towards an open-source and ...
The Open Backscatter Toolchain (OpenBST) project: towards an open-source and ...
Giuseppe Masetti1.8K views
Pydro & HydrOffice: Open Tools for Ocean Mappers by Giuseppe Masetti
Pydro & HydrOffice: Open Tools for Ocean MappersPydro & HydrOffice: Open Tools for Ocean Mappers
Pydro & HydrOffice: Open Tools for Ocean Mappers
Giuseppe Masetti18.5K views
INMARTECH 2018 - G.Masetti & P.Johnson - Sound Speed Management and Environme... by Giuseppe Masetti
INMARTECH 2018 - G.Masetti & P.Johnson - Sound Speed Management and Environme...INMARTECH 2018 - G.Masetti & P.Johnson - Sound Speed Management and Environme...
INMARTECH 2018 - G.Masetti & P.Johnson - Sound Speed Management and Environme...
Giuseppe Masetti93.4K views
Backscatter Working Group Software Inter-comparison Project Requesting and Co... by Giuseppe Masetti
Backscatter Working Group Software Inter-comparison ProjectRequesting and Co...Backscatter Working Group Software Inter-comparison ProjectRequesting and Co...
Backscatter Working Group Software Inter-comparison Project Requesting and Co...
Giuseppe Masetti2.7K views
Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ... by Giuseppe Masetti
Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ...Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ...
Shallow Survey 2018 - Applications of Sonar Detection Uncertainty for Survey ...
Giuseppe Masetti313 views
Bathymetric Attributed Grid (BAG) format by Giuseppe Masetti
Bathymetric Attributed Grid (BAG) formatBathymetric Attributed Grid (BAG) format
Bathymetric Attributed Grid (BAG) format
Giuseppe Masetti746 views
HydrOffice: past, present, and future. by Giuseppe Masetti
HydrOffice: past, present, and future.HydrOffice: past, present, and future.
HydrOffice: past, present, and future.
Giuseppe Masetti23.5K views

Recently uploaded

Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana... by
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...jahnviarora989
7 views12 slides
2. Natural Sciences and Technology Author Siyavula.pdf by
2. Natural Sciences and Technology Author Siyavula.pdf2. Natural Sciences and Technology Author Siyavula.pdf
2. Natural Sciences and Technology Author Siyavula.pdfssuser821efa
10 views232 slides
MILK LIPIDS 2.pptx by
MILK LIPIDS 2.pptxMILK LIPIDS 2.pptx
MILK LIPIDS 2.pptxabhinambroze18
9 views15 slides
Light Pollution for LVIS students by
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS studentsCWBarthlmew
12 views12 slides
application of genetic engineering 2.pptx by
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptxSankSurezz
14 views12 slides
Applications of Large Language Models in Materials Discovery and Design by
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and DesignAnubhav Jain
13 views17 slides

Recently uploaded(20)

Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana... by jahnviarora989
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
Structure of purines and pyrimidines - Jahnvi arora (11228108), mmdu ,mullana...
jahnviarora9897 views
2. Natural Sciences and Technology Author Siyavula.pdf by ssuser821efa
2. Natural Sciences and Technology Author Siyavula.pdf2. Natural Sciences and Technology Author Siyavula.pdf
2. Natural Sciences and Technology Author Siyavula.pdf
ssuser821efa10 views
Light Pollution for LVIS students by CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew12 views
application of genetic engineering 2.pptx by SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz14 views
Applications of Large Language Models in Materials Discovery and Design by Anubhav Jain
Applications of Large Language Models in Materials Discovery and DesignApplications of Large Language Models in Materials Discovery and Design
Applications of Large Language Models in Materials Discovery and Design
Anubhav Jain13 views
How to be(come) a successful PhD student by Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens537 views
별헤는 사람들 2023년 12월호 전명원 교수 자료 by sciencepeople
별헤는 사람들 2023년 12월호 전명원 교수 자료별헤는 사람들 2023년 12월호 전명원 교수 자료
별헤는 사람들 2023년 12월호 전명원 교수 자료
sciencepeople63 views
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI8 views
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance... by InsideScientific
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
A Ready-to-Analyze High-Plex Spatial Signature Development Workflow for Cance...
InsideScientific105 views
A giant thin stellar stream in the Coma Galaxy Cluster by Sérgio Sacani
A giant thin stellar stream in the Coma Galaxy ClusterA giant thin stellar stream in the Coma Galaxy Cluster
A giant thin stellar stream in the Coma Galaxy Cluster
Sérgio Sacani18 views
Nitrosamine & NDSRI.pptx by NileshBonde4
Nitrosamine & NDSRI.pptxNitrosamine & NDSRI.pptx
Nitrosamine & NDSRI.pptx
NileshBonde418 views
Factors affecting fluorescence and phosphorescence.pptx by SamarthGiri1
Factors affecting fluorescence and phosphorescence.pptxFactors affecting fluorescence and phosphorescence.pptx
Factors affecting fluorescence and phosphorescence.pptx
SamarthGiri17 views
RemeOs science and clinical evidence by PetrusViitanen1
RemeOs science and clinical evidenceRemeOs science and clinical evidence
RemeOs science and clinical evidence
PetrusViitanen153 views
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... by ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 views
Note on the Riemann Hypothesis by vegafrank2
Note on the Riemann HypothesisNote on the Riemann Hypothesis
Note on the Riemann Hypothesis
vegafrank27 views

Masetti et al. - Bathymetric and reflectivity-derived data fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling

  • 1. Bathymetric and Reflectivity-derived Data Fusion for Preliminary Seafloor Segmentation and Strategic Bottom Sampling G. Masetti, L.A. Mayer, L.G. Ward, D. Sowers
  • 2. BACKSCATTER PROCESSING Data Acquisition Pre-Processing Analysis 2 RAW PRE ARA
  • 3. GEOCODER 3 ARA MOS RAW PRE Ref.: Fonseca, L., and Mayer, L.A., Remote estimation of surficial seafloor properties through the application of Angular Range Analysis to multibeam sonar data, Mar. Geophysical Res., 28 (2), p. 119-126, 2007.
  • 4. 4 ARA MOS RAW PRE GEOCODER Ref.: Fonseca, L., and Mayer, L.A., Remote estimation of surficial seafloor properties through the application of Angular Range Analysis to multibeam sonar data, Mar. Geophysical Res., 28 (2), p. 119-126, 2007.
  • 5. A framework of libraries and tools for Ocean Mapping 5 Quickly prototype and test innovative ideas Ease the transition from research to operation Ref.: G. Masetti, Wilson, M. J., Calder, B. R., Gallagher, B., and Zhang, C., “Research-driven Tools for Ocean Mappers”, Hydro Int., vol. 21, 5. GeoMares, 2017.
  • 7. Sound Speed Manager ▪ Manage sound speed casts. ▪ Adopted by UNOLS vessels (MAC) and many others. ▪ Modified to fit NOAA Coast Survey needs. ▪ ARA’s pro: Absorption Coefficient. 7Ref.: G. Masetti, Gallagher, B., Calder, B. R., Zhang, C., and Wilson, M. J., “Sound Speed Manager”, Int. Hydr. Review, vol. 17. IHB, pp. 31-40, 2017.
  • 11. Survey Data Monitor ▪ Merge ideas from: ▫ Manda’s svplot ▫ Wilson’s CastTime ▪ Leverage: ▫ SSM database ▫ SSM-SIS interaction 11
  • 12. Survey Data Monitor & Cast Timing 12 1490 1535 0 4 16 8 12 0 10 20 30 40 Comparing the simulated seafloors is an estimate of sounding depth bias Sound Speed (m/s) Depth(m) Horizontal Range (m) 1505 1520 Δd
  • 13. SmartMap ▪ Effects of oceanographic variability on mapping surveys ▪ Two components: ▫ C++ & Python ▫ GeoServer and OGC services ▪ WebGIS: ▫ www.hydroffice.org/smartmap/ 13Ref.: G. Masetti, Kelley, J., Johnson, P., and Beaudoin, J., “A Ray-Tracing Uncertainty Estimation Tool for Ocean Mapping”, IEEE Access. IEEE, pp. 1-9, 2017.
  • 14. SmartMap WebGIS ▪ RTOFS + WOA13 ▪ Animation ▪ Past data ▪ Survey Planner 14
  • 15. 15
  • 16. StormFix ARTIFACTS DETECTION ARTIFACTS REDUCTION BACKSCATTER MOSAICKING ANGULAR RESPONSE ANALYSIS Ref.: G. Masetti et al., “How to Improve the Quality and the Reproducibility for Acoustic Seafloor Characterization”, GeoHab 2017. p. Nova Scotia, Canada, 2017.
  • 18. 18
  • 19. 19
  • 20. 20
  • 21. 21 Just Removal vs Randomization Schema
  • 22. QC Tools ▪ Automate QC for Survey Review and Chart Compilation: ▫ Convert best practices and specs into code. ▫ Familiarize new personnel to specs. ▪ Routinely used by NOAA OCS. ▪ Improved productivity of the ping- to-chart workflow. 22Ref.: M. J. Wilson, Masetti, G., and Calder, B. R., “Automated Tools to Improve the Ping-to-Chart Workflow”, Int. Hydr. Review, vol. 17. IHB, pp. 21-30, 2017.
  • 23. QC Tools & Grid Anomalies ▪ ARA’s pro: Artifacts reduction. 23
  • 24. HYDROFFICE APPS 24 PYTHON SCIENTIFIC STACK OCEAN MAPPING LIBS & SCRIPTS
  • 25. Distribution Pydro Universe Stand-alone Apps Python Packages NOAA website www.hydroffice.org GitHub/PyPi/Conda 25
  • 27. 27Ref.: Fonseca, L. et al., “Angular range analysis of acoustic themes from Stanton Banks Ireland”, Applied Acoustics, vol. 70. pp. 1298-1304, 2009.
  • 28. Bress ▪ Preliminary segmentation from co-located DEMs and backscatter mosaics ▪ Based on principles of: ▫ Topographic openness ▫ Pattern recognition ▫ Texture classification 28Ref.: G. Masetti, Mayer, L. A., and Ward, L. G., “A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation”, Geosciences, vol. 8(1). MDPI, 2018.
  • 35. - + 0 1 2 3 4 5 6 7 8 0 1 - 2 - - 3 - - - 4 - - - - 5 - - - - - 6 - - - - - - 7 - - - - - - - 8 - - - - - - - - Ref.: J. Jasiewicz, T.F. Stepinski, “Geomorphons—a pattern recognition approach to classification and mapping of landforms”, Geomorphology, 182, pp.147–156, 2013.
  • 36. FL FL FL FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL SL SL FS FS FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS FL FL FL FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL SL SL FS FS FL FL FL FL FL SL SL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FL FL FL FL SL SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS FS FS FS FS SL SL SL SL SL SL SL FS FS FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS VL VL VL VL VL VL VL VL VL VL VL VL VL FS FS FS FS FS FS FS
  • 41. 41
  • 42. 42
  • 43. 43 Different Criteria: • Given a fixed number of samples, locations with largest coverage? • How many samples to obtain a given percentage of coverage? • What are the more “meaningful” locations for bottom sampling? ???
  • 45. 45
  • 46. 46
  • 47. 47
  • 48. 48
  • 49. 49
  • 50. 50
  • 51. 51
  • 52. 52
  • 53. CONCLUSIONS 53 • Output segments preserve physical intuition: • Same landform type • Similar reflectivity texture • Preliminary segmentation is a building block for: • Theme-based seafloor characterization • Strategic bottom sampling • Habitat modeling (WIP)
  • 54. THANKS! Any questions? Visit: https://www.hydroffice.org You can contact me at: gmasetti@ccom.unh.edu