Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Rotation

566 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Rotation

  1. 1. ROTATION
  2. 2. 1. ROTATIONJ FORMULA OVER O(0,0) . Let A(x,y) any point in plane V ang A’(x’,y’)isimage of A over R 0, , or A’ = R 0, (A).Let m(XOA)=  .We have x =OA cos dan y = OA sin and x’ = OA’ cos (+) = OA (cos cos - sin sin) = x cos  - y sin 
  3. 3. A’(x’,y’) A(x,y)  (0,0)
  4. 4. .• y’ = OA’ sin (+)• = OA(sin  cos  + cos  sin )• = x sin  + y cos • so• x’ = xcos  - y sin • y’ = x sin  + y cos • or  x cos   sin    x    y  sin   y    cos    
  5. 5. C’(x’,y’)=C’(x*’,y*’) y* C(x,y)=C(x*,y*) (a,b) x*(0,0) X Y
  6. 6. 2. ROTATION OVER P(a,b)• Let we have coordinate system with centre P(a,b)and has two axis X* and Y*, X//X* and Y//Y*.• If C(x*,y*) and C’=RP,(C), then C’ (x*’,y*’) , we have a relation :  x*  cos   sin    x *   y* sin     cos    y *  
  7. 7. In coordinate of X , Y axis , we have : xa  cos   sin    x  a   y b sin  cos    y  b     x cos   sin    x   p   y  sin  cos    y  q         p  a cos   b sin   a q  a sin   b cos   b
  8. 8. THEOREM • Rotation RP, can represent in composition of two lines reflection over s and t with P is (s,t) and m(<(s,t))=½ . • Rotation is an isometry • composition of two lines reflection :  SAB ,if s//tM t Ms    R P,θ , if t and s not paralel
  9. 9. A” t T A’ Q sP A
  10. 10. Theorem 1  R R P, P, - Theorem R P, R P,   R P,  
  11. 11. •If s perpendicular to t and P=(s,t) ,•then MtMs=HP. s A” P Et A D A’
  12. 12. . For every line a,b with• Teorema a//b, then MbMa=SCD with |CD|=2 x distance (a,b) and CD a. P’ P P’’ B A D a P b
  13. 13. Mb Ma = Mb I Ma = Mb (MsMs )Ma = Mb MsMs Ma = (Mb Ms )(Ms Ma) = HBHA = SCD with |CD|= 2 |AB|
  14. 14. •Translation SAB can represent ascomposition of two reflection Ms dan Mtwith s//t and s  AB, and distance of(s,t) is ½ |AB|. t B s A
  15. 15. • Given three paralel lines a, b dan c.• Construct an equilateral triangle ABC with condition A on a, B on b and C on c. a b c
  16. 16. Contoh permasalahan a A b B c C
  17. 17. • a. Fixed any point A on a.• b. Rotated line c, with angle 60o over A, we got c’.• c. Intersection of line c’ and line b, ( c’,b) is point B.• d. We can construct equilateral triangle ABC.•• We can also start with fixed point B on b or C on c.• Can do it ?
  18. 18. • a. Fixed any point B on b.• b. Rotated line a, with angle 60o over B, we got a’.• c. Intersect of line a’ and line c, ( a’,c) is point C .• d. We can construct equilqteral triangle ABC.•• We can also start with fixed point A on a or C on c.• Can do it ?

×