SlideShare a Scribd company logo

composites applications in electrical and electronics

electrical and electronics application of composites

1 of 32
Download to read offline
Applications of composites in
field of electrical and electronics
Mechanics of composite materials Assignment
GIRISH RAGHUNATHAN
1RV18MMD07
Outline
APPPLICATIONS
• PCB
• Electromagnetic shielding
• Electrical switching and insulation
• Wearable electronics
• Electronic sensors(E NOSE)
• Batteries
• Lightning Harvester
1.Printed Circuit Board
Fig 1: PCB made from FR4 composite
Fig 2: Function of a dielectric
• A PCB substrate must have good dielectric performance. That is, it
must insulate the conductive layers from one another by blocking
electrical conductivity, to minimize electrical signal loss, crosstalk
between conductive layers and noise.
• Technically, that translates into a low dielectric constant (Dk ≤3.7)
and a low dissipation factor (Df ≤0.005).
• The higher the Dk, the lower the speed of the electrical signal. Df is a
measure of the loss in dielectric property, in this case, the insulative
capability of the PCB’s composite substrate.
• Because signal loss and noise are exacerbated by heat, substrates
must contribute to thermal management as well.
• The majority of PCBs are made with E-glass/epoxy prepregs -- the
PCB industry's traditional workhorse material, designated "FR-4," is
an E-glass/epoxy material -- although other reinforcing fibers,
including aramid and quartz, are sometimes used for specialty
applications.
• Resin alternatives include vinyl ester and polyester, for commodity
boards, and cyanate ester, polyimide and bismaleimide triazine (BT)
for more demanding, elevated-temperature applications.

Recommended

More Related Content

What's hot

Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Debajyoti Biswas
 
L-3-4 Introduction to electroceramics.pptx
L-3-4 Introduction to electroceramics.pptxL-3-4 Introduction to electroceramics.pptx
L-3-4 Introduction to electroceramics.pptxPUNAMK4
 
Synthesis and Fabrication of Polymers
Synthesis and Fabrication of PolymersSynthesis and Fabrication of Polymers
Synthesis and Fabrication of PolymersPam Cudal
 
Classification of-composites
Classification of-compositesClassification of-composites
Classification of-compositesRajaram Ganesan
 
Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)Kamlesh Jakhar
 
Composites lecture notes
Composites lecture notesComposites lecture notes
Composites lecture notesCOLLINS OTIENO
 
Filament winding نآمیرا فارسیمادان
Filament winding  نآمیرا فارسیمادانFilament winding  نآمیرا فارسیمادان
Filament winding نآمیرا فارسیمادانZara Hussain
 
Epoxy resin composites
Epoxy resin compositesEpoxy resin composites
Epoxy resin compositesVishal K P
 
Electrospinning of Nanofibres
Electrospinning of NanofibresElectrospinning of Nanofibres
Electrospinning of Nanofibreskanhaiya kumawat
 
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...gidla vinay
 
Vacuum bag molding
Vacuum bag moldingVacuum bag molding
Vacuum bag moldingSethu Ram
 
Crystallinity in polymers
Crystallinity in polymers Crystallinity in polymers
Crystallinity in polymers Manjinder Singh
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix compositesHiep Tran
 
Surface modification
Surface modificationSurface modification
Surface modificationtranslateds
 

What's hot (20)

Composite materials PPT
Composite materials PPT Composite materials PPT
Composite materials PPT
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1Analysis of Conducting Polymer:Polypyrrole::Part 1
Analysis of Conducting Polymer:Polypyrrole::Part 1
 
Autoclave molding
Autoclave moldingAutoclave molding
Autoclave molding
 
L-3-4 Introduction to electroceramics.pptx
L-3-4 Introduction to electroceramics.pptxL-3-4 Introduction to electroceramics.pptx
L-3-4 Introduction to electroceramics.pptx
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Synthesis and Fabrication of Polymers
Synthesis and Fabrication of PolymersSynthesis and Fabrication of Polymers
Synthesis and Fabrication of Polymers
 
Classification of-composites
Classification of-compositesClassification of-composites
Classification of-composites
 
Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)
 
Composites lecture notes
Composites lecture notesComposites lecture notes
Composites lecture notes
 
Filament winding نآمیرا فارسیمادان
Filament winding  نآمیرا فارسیمادانFilament winding  نآمیرا فارسیمادان
Filament winding نآمیرا فارسیمادان
 
Epoxy resin composites
Epoxy resin compositesEpoxy resin composites
Epoxy resin composites
 
Electrospinning of Nanofibres
Electrospinning of NanofibresElectrospinning of Nanofibres
Electrospinning of Nanofibres
 
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...
Polymer Matrix Composites – Matrix Resins– Thermosetting resins, Thermoplasti...
 
Vacuum bag molding
Vacuum bag moldingVacuum bag molding
Vacuum bag molding
 
Crystallinity in polymers
Crystallinity in polymers Crystallinity in polymers
Crystallinity in polymers
 
Metal matrix composites
Metal matrix compositesMetal matrix composites
Metal matrix composites
 
Pultrusion process
Pultrusion  processPultrusion  process
Pultrusion process
 
Surface modification
Surface modificationSurface modification
Surface modification
 

Similar to composites applications in electrical and electronics

Composites in electrical and electronic applications
Composites in electrical and electronic applicationsComposites in electrical and electronic applications
Composites in electrical and electronic applicationsgirish_raghunathan4488
 
HVE UNIT II DIELECTRIC BREAKDOWN.pptx
HVE UNIT II  DIELECTRIC BREAKDOWN.pptxHVE UNIT II  DIELECTRIC BREAKDOWN.pptx
HVE UNIT II DIELECTRIC BREAKDOWN.pptxMuthuKumar158260
 
Ageing of Medium Voltage Cables
Ageing of Medium Voltage CablesAgeing of Medium Voltage Cables
Ageing of Medium Voltage CablesLeonardo ENERGY
 
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDING
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDINGA LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDING
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDINGIJEEE
 
Insulation and Dielectric Breakdown Design Paper SM54
Insulation and Dielectric Breakdown Design Paper SM54Insulation and Dielectric Breakdown Design Paper SM54
Insulation and Dielectric Breakdown Design Paper SM54Subhash Mahla
 
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...journalBEEI
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Materialgueste2531
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Materialdavekellerman
 
22 9752 cable paper id 0022 edit septian
22 9752 cable paper id 0022 edit septian22 9752 cable paper id 0022 edit septian
22 9752 cable paper id 0022 edit septianIAESIJEECS
 
Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Milan Van Bree
 
why and how thin films
why and how thin filmswhy and how thin films
why and how thin filmssumit__kumar
 
In tech polymer-based_nanodielectric_composites
In tech polymer-based_nanodielectric_compositesIn tech polymer-based_nanodielectric_composites
In tech polymer-based_nanodielectric_compositesMohsen Fayik
 
Module 04 - Cables.pptx
Module 04 - Cables.pptxModule 04 - Cables.pptx
Module 04 - Cables.pptxZahid Yousaf
 
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...IRJET Journal
 
VPI for turbo generator
VPI for turbo generatorVPI for turbo generator
VPI for turbo generatorRajuEEE
 
PCB Potting Compound 4.docx
PCB Potting Compound 4.docxPCB Potting Compound 4.docx
PCB Potting Compound 4.docxpcbpottingc
 

Similar to composites applications in electrical and electronics (20)

Composites in electrical and electronic applications
Composites in electrical and electronic applicationsComposites in electrical and electronic applications
Composites in electrical and electronic applications
 
HVE UNIT II DIELECTRIC BREAKDOWN.pptx
HVE UNIT II  DIELECTRIC BREAKDOWN.pptxHVE UNIT II  DIELECTRIC BREAKDOWN.pptx
HVE UNIT II DIELECTRIC BREAKDOWN.pptx
 
Ageing of Medium Voltage Cables
Ageing of Medium Voltage CablesAgeing of Medium Voltage Cables
Ageing of Medium Voltage Cables
 
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDING
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDINGA LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDING
A LITERATURE SURVEY ON ELECTROMAGNETIC SHIELDING
 
Insulation and Dielectric Breakdown Design Paper SM54
Insulation and Dielectric Breakdown Design Paper SM54Insulation and Dielectric Breakdown Design Paper SM54
Insulation and Dielectric Breakdown Design Paper SM54
 
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
Synthesis of (Poly-methyl Methacrylate-lead Oxide) Nanocomposites and Studyin...
 
Power cables
Power cablesPower cables
Power cables
 
Underground cables
Underground cablesUnderground cables
Underground cables
 
Polymer electronics
Polymer electronicsPolymer electronics
Polymer electronics
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Material
 
The Evolution Of An Electronic Material
The Evolution Of An Electronic MaterialThe Evolution Of An Electronic Material
The Evolution Of An Electronic Material
 
22 9752 cable paper id 0022 edit septian
22 9752 cable paper id 0022 edit septian22 9752 cable paper id 0022 edit septian
22 9752 cable paper id 0022 edit septian
 
Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]Thin_Film_Technology_introduction[1]
Thin_Film_Technology_introduction[1]
 
why and how thin films
why and how thin filmswhy and how thin films
why and how thin films
 
In tech polymer-based_nanodielectric_composites
In tech polymer-based_nanodielectric_compositesIn tech polymer-based_nanodielectric_composites
In tech polymer-based_nanodielectric_composites
 
Module 04 - Cables.pptx
Module 04 - Cables.pptxModule 04 - Cables.pptx
Module 04 - Cables.pptx
 
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...
IRJET- Enhancement Performance of Polymer High Voltage Insulators using Nano-...
 
HIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERINGHIGH VOLTAGE ENGINEERING
HIGH VOLTAGE ENGINEERING
 
VPI for turbo generator
VPI for turbo generatorVPI for turbo generator
VPI for turbo generator
 
PCB Potting Compound 4.docx
PCB Potting Compound 4.docxPCB Potting Compound 4.docx
PCB Potting Compound 4.docx
 

More from girish_raghunathan4488 (9)

Dc current
Dc currentDc current
Dc current
 
Vibration signature analysis
Vibration signature analysisVibration signature analysis
Vibration signature analysis
 
Magnetorheological fluids
Magnetorheological fluidsMagnetorheological fluids
Magnetorheological fluids
 
Fretting phenomenon
Fretting phenomenonFretting phenomenon
Fretting phenomenon
 
Nano lithography techniques
Nano lithography techniquesNano lithography techniques
Nano lithography techniques
 
Eap presentaiton
Eap presentaitonEap presentaiton
Eap presentaiton
 
Tribology
TribologyTribology
Tribology
 
Sunshine recorder
Sunshine recorderSunshine recorder
Sunshine recorder
 
Torsional deflection
Torsional deflectionTorsional deflection
Torsional deflection
 

Recently uploaded

Module 2_ Divide and Conquer Approach.pptx
Module 2_ Divide and Conquer Approach.pptxModule 2_ Divide and Conquer Approach.pptx
Module 2_ Divide and Conquer Approach.pptxnikshaikh786
 
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh Rajput
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh RajputBasic Instrumentation Symbols | P&ID | PFD | Gaurav Singh Rajput
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh RajputGaurav Singh Rajput
 
Center Enamel is the leading fire water tanks manufacturer in China.docx
Center Enamel is the leading fire water tanks manufacturer in China.docxCenter Enamel is the leading fire water tanks manufacturer in China.docx
Center Enamel is the leading fire water tanks manufacturer in China.docxsjzzztc
 
Center Enamel is the leading bolted steel tanks manufacturer in China.docx
Center Enamel is the leading bolted steel tanks manufacturer in China.docxCenter Enamel is the leading bolted steel tanks manufacturer in China.docx
Center Enamel is the leading bolted steel tanks manufacturer in China.docxsjzzztc
 
Basic Concepts of Material Science for Electrical and Electronic Materials ...
Basic Concepts of Material Science for  Electrical and Electronic Materials  ...Basic Concepts of Material Science for  Electrical and Electronic Materials  ...
Basic Concepts of Material Science for Electrical and Electronic Materials ...PeopleFinder
 
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...C Sai Kiran
 
Deluck Technical Works Company Profile.pdf
Deluck Technical Works Company Profile.pdfDeluck Technical Works Company Profile.pdf
Deluck Technical Works Company Profile.pdfartpoa9
 
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptGE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptsrajece
 
Checklist to troubleshoot CD moisture profiles.docx
Checklist to troubleshoot CD moisture profiles.docxChecklist to troubleshoot CD moisture profiles.docx
Checklist to troubleshoot CD moisture profiles.docxNomanKhan691800
 
【文凭定制】坎特伯雷大学毕业证学历认证
【文凭定制】坎特伯雷大学毕业证学历认证【文凭定制】坎特伯雷大学毕业证学历认证
【文凭定制】坎特伯雷大学毕业证学历认证muvgemo
 
S. Kim, NeurIPS 2023, MLILAB, KAISTAI
S. Kim,  NeurIPS 2023,  MLILAB,  KAISTAIS. Kim,  NeurIPS 2023,  MLILAB,  KAISTAI
S. Kim, NeurIPS 2023, MLILAB, KAISTAIMLILAB
 
Energy Efficient Social Housing for One Manchester
Energy Efficient Social Housing for One ManchesterEnergy Efficient Social Housing for One Manchester
Energy Efficient Social Housing for One Manchestermark alegbe
 
GDSC Web Bootcamp - Day - 2 - JavaScript
GDSC Web Bootcamp -  Day - 2   - JavaScriptGDSC Web Bootcamp -  Day - 2   - JavaScript
GDSC Web Bootcamp - Day - 2 - JavaScriptSahithiGurlinka
 
CDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdfCDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdf8-koi
 
Pointers and Array, pointer and String.pptx
Pointers and Array, pointer and String.pptxPointers and Array, pointer and String.pptx
Pointers and Array, pointer and String.pptxAnanthi Palanisamy
 
Introduction to Binary Tree and Conersion of General tree to Binary Tree
Introduction to Binary Tree  and Conersion of General tree to Binary TreeIntroduction to Binary Tree  and Conersion of General tree to Binary Tree
Introduction to Binary Tree and Conersion of General tree to Binary TreeSwarupaDeshpande4
 
Introduction and replication to DragonflyDB
Introduction and replication to DragonflyDBIntroduction and replication to DragonflyDB
Introduction and replication to DragonflyDBMarian Marinov
 
CHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction ModuleCHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction Modulessusera4f8281
 
Laser And its Application's - Engineering Physics
Laser And its Application's - Engineering PhysicsLaser And its Application's - Engineering Physics
Laser And its Application's - Engineering PhysicsPurva Nikam
 
Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0RaishKhanji
 

Recently uploaded (20)

Module 2_ Divide and Conquer Approach.pptx
Module 2_ Divide and Conquer Approach.pptxModule 2_ Divide and Conquer Approach.pptx
Module 2_ Divide and Conquer Approach.pptx
 
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh Rajput
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh RajputBasic Instrumentation Symbols | P&ID | PFD | Gaurav Singh Rajput
Basic Instrumentation Symbols | P&ID | PFD | Gaurav Singh Rajput
 
Center Enamel is the leading fire water tanks manufacturer in China.docx
Center Enamel is the leading fire water tanks manufacturer in China.docxCenter Enamel is the leading fire water tanks manufacturer in China.docx
Center Enamel is the leading fire water tanks manufacturer in China.docx
 
Center Enamel is the leading bolted steel tanks manufacturer in China.docx
Center Enamel is the leading bolted steel tanks manufacturer in China.docxCenter Enamel is the leading bolted steel tanks manufacturer in China.docx
Center Enamel is the leading bolted steel tanks manufacturer in China.docx
 
Basic Concepts of Material Science for Electrical and Electronic Materials ...
Basic Concepts of Material Science for  Electrical and Electronic Materials  ...Basic Concepts of Material Science for  Electrical and Electronic Materials  ...
Basic Concepts of Material Science for Electrical and Electronic Materials ...
 
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
Introduction to Machine Learning Unit-1 Notes for II-II Mechanical Engineerin...
 
Deluck Technical Works Company Profile.pdf
Deluck Technical Works Company Profile.pdfDeluck Technical Works Company Profile.pdf
Deluck Technical Works Company Profile.pdf
 
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.pptGE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
GE8073 - FUNDAMENTALS OF NANOSCIENCE.ppt
 
Checklist to troubleshoot CD moisture profiles.docx
Checklist to troubleshoot CD moisture profiles.docxChecklist to troubleshoot CD moisture profiles.docx
Checklist to troubleshoot CD moisture profiles.docx
 
【文凭定制】坎特伯雷大学毕业证学历认证
【文凭定制】坎特伯雷大学毕业证学历认证【文凭定制】坎特伯雷大学毕业证学历认证
【文凭定制】坎特伯雷大学毕业证学历认证
 
S. Kim, NeurIPS 2023, MLILAB, KAISTAI
S. Kim,  NeurIPS 2023,  MLILAB,  KAISTAIS. Kim,  NeurIPS 2023,  MLILAB,  KAISTAI
S. Kim, NeurIPS 2023, MLILAB, KAISTAI
 
Energy Efficient Social Housing for One Manchester
Energy Efficient Social Housing for One ManchesterEnergy Efficient Social Housing for One Manchester
Energy Efficient Social Housing for One Manchester
 
GDSC Web Bootcamp - Day - 2 - JavaScript
GDSC Web Bootcamp -  Day - 2   - JavaScriptGDSC Web Bootcamp -  Day - 2   - JavaScript
GDSC Web Bootcamp - Day - 2 - JavaScript
 
CDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdfCDE_Sustainability Performance_20240214.pdf
CDE_Sustainability Performance_20240214.pdf
 
Pointers and Array, pointer and String.pptx
Pointers and Array, pointer and String.pptxPointers and Array, pointer and String.pptx
Pointers and Array, pointer and String.pptx
 
Introduction to Binary Tree and Conersion of General tree to Binary Tree
Introduction to Binary Tree  and Conersion of General tree to Binary TreeIntroduction to Binary Tree  and Conersion of General tree to Binary Tree
Introduction to Binary Tree and Conersion of General tree to Binary Tree
 
Introduction and replication to DragonflyDB
Introduction and replication to DragonflyDBIntroduction and replication to DragonflyDB
Introduction and replication to DragonflyDB
 
CHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction ModuleCHAPTER 1_ HTML and CSS Introduction Module
CHAPTER 1_ HTML and CSS Introduction Module
 
Laser And its Application's - Engineering Physics
Laser And its Application's - Engineering PhysicsLaser And its Application's - Engineering Physics
Laser And its Application's - Engineering Physics
 
Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0Introduction about Technology roadmap for Industry 4.0
Introduction about Technology roadmap for Industry 4.0
 

composites applications in electrical and electronics

  • 1. Applications of composites in field of electrical and electronics Mechanics of composite materials Assignment GIRISH RAGHUNATHAN 1RV18MMD07
  • 2. Outline APPPLICATIONS • PCB • Electromagnetic shielding • Electrical switching and insulation • Wearable electronics • Electronic sensors(E NOSE) • Batteries • Lightning Harvester
  • 3. 1.Printed Circuit Board Fig 1: PCB made from FR4 composite
  • 4. Fig 2: Function of a dielectric
  • 5. • A PCB substrate must have good dielectric performance. That is, it must insulate the conductive layers from one another by blocking electrical conductivity, to minimize electrical signal loss, crosstalk between conductive layers and noise. • Technically, that translates into a low dielectric constant (Dk ≤3.7) and a low dissipation factor (Df ≤0.005). • The higher the Dk, the lower the speed of the electrical signal. Df is a measure of the loss in dielectric property, in this case, the insulative capability of the PCB’s composite substrate. • Because signal loss and noise are exacerbated by heat, substrates must contribute to thermal management as well.
  • 6. • The majority of PCBs are made with E-glass/epoxy prepregs -- the PCB industry's traditional workhorse material, designated "FR-4," is an E-glass/epoxy material -- although other reinforcing fibers, including aramid and quartz, are sometimes used for specialty applications. • Resin alternatives include vinyl ester and polyester, for commodity boards, and cyanate ester, polyimide and bismaleimide triazine (BT) for more demanding, elevated-temperature applications.
  • 7. • The coefficient of thermal expansion (CTE) of silicon memory chips is 2.5 /°C • CTE of a fiberglass laminate can range from 14 /°C to 24 /°C. • An advantage of aramid as an alternative laminate substrate is its low negative CTE, which reduces thermal stress, as well as its low dielectric constant of 4, compared to 6.2 for E-glass.
  • 8. 2. Electromagnetic shielding • Electromagnetic shielding principle The effect of electromagnetic shielding is to reduce the electromagnetic field effect in a certain area (not including these sources) generated by some radiation sources, and to effectively control the harm caused by electromagnetic radiation from one area to another.
  • 9. RISK FROM EM RADIATION • If human beings are exposed to the EM waves, the network of veins in high risk organs such as eyes might be affected. This is due to heat build-up in the eyes by the EM waves which could not be easily dissipated. • In order to avoid these hazards to human beings and to protect the sensitive circuits from undesired EM radiation, EMI shielding is essential.
  • 10. Fig 3: Electromagnetic shielding mechanism Fig 4: Components of an electromagnetic wave
  • 11. • The principle of action is the use of low-resistance conductor material, because the conductor material has a reflection and guiding effect on electromagnetic energy flow and within the conductor material. • It create the current and magnetic polarization which is opposite with the source of electromagnetic field, thereby reduce the effect of radiation source in electromagnetic field, normally it represented by shielding effectiveness (SE). • The shielding effectiveness refers to the ratio of the incident or reflection electromagnetic waves without shielding to the reflection or transmission of electromagnetic wave under shielding at the same location, that is, shielding material to the attenuation value of electromagnetic signal, the unit is (dB).
  • 12. Conductive mechanism of composite conductive polymer • With the increase of the concentration of conductive filler, the conductivity of the polymer increases slowly. When the concentration reaches a certain value, the conductivity increases sharply, the polymer becomes a conductor, and the filler concentration continues to increase but electro conductivity has not changed much. • The conductivity filler concentration at which the conductivity changed abruptly is called the 'diafiltration threshold'. So its conductive mechanism has two main theories: one is the conductive channel theory; the other is the tunnel effect theory. • The conductive channel mechanism plays a major role in the high concentration of conductive filler, which means that when the content of the conductive filler reaches the 'diafiltration threshold', the conductive particles contact each other to form an infinite network. The formation of conductive channels, carriers can freely move within the system. Thereby making the composite conductive. • The tunneling effect plays a major role in the low packing concentration, which means that there is a certain spacing between the conductive particles. Electrons in the thermal vibration under the action of migration form a conductive network. So that the composite polymer becomes conductive.
  • 13. Fig 5: Conductive path formed in a conductive polymer
  • 14. • The low frequency signals can be arrested by means of reflection whereas high frequency signals should be arrested by means of absorption which needs much attention. • Much research has been conducted to develop high frequency EM absorbers by means of coating fillers with magnetic materials or incorporation of magnetic materials in the polymer matrix.
  • 15. • Materials with high absorption co-efficient could impart shielding effectiveness of 80 dB for the frequency of 18 GHz electronic systems has increased enormously in all the engineering and technology fields. The advances in electronics reduces the component size and placing more number of electrical parts in limited space reduces the system size and increases the mobility. • Placing more number of components in a very confined space builds the problem of keeping the electromagnetic interference (EMI) of these systems from interfering with other systems through radiation. • Carbon-Carbon composites have good shield effectiveness of 124 dB in low frequency range of 0.3Mhz to 1.2 Ghz, the dominant mode being reflection.
  • 16. 3. Electrical switching and insulation Properties that composite materials have include : • Dielectric strength • High thermal conductivity • Low electrical conductivity for insulation • Electromagnetic interference (EMI) shielding effectiveness • Heat resistance • Track resistance • Low coefficient of thermal expansion • Durability to withstand repeated use without a decrease in performance • Moisture resistance for safety and durability • Sound baffling for quieter operation
  • 17. • Paper-Phenolic Materials Norplex-Micarta offers a variety of paper phenolic sheets. This cost-effective line of products consists of multiple plies of various papers impregnated with phenolic resins and laminated under heat and pressure to produce a thermoset composite. Both papers and resins can be modified to change the finished properties of the final laminate. These products offer thermal, mechanical isolation, and thermal and electrical insulation properties that meet or exceed those of most thermoplastic materials. The properties and cost-effectiveness of these products often make them the insulators of choice in low-voltage, dry-service electrical equipment.
  • 18. • RTB326 - Epoxy Cotton/Linen Tube Grade RTB326 is a tube made from a fine cotton fabric and an epoxy resin system. It has low moisture absorption and excellent dimensional stability and chemical resistance. Typical uses include bearing retainers and parts that require excellent machining characteristics. • NP509 - Melamine Glass Sheet Woven glass fabric, melamine resin laminate. NP509 is very hard, flame resistant, machining grade with excellent electrical properties in high humidity conditions. NP509 has high physical strength and excellent arc resistance. Meets MIL-I-24768/1 type GME, MIL-I-24768/8 type GMG and IEC 60893-3-3-MF GC 201.
  • 19. • Paper-Epoxy Materials These products consist of multiple plies of various papers impregnated with specialty epoxy resin systems and laminated under heat and pressure to produce a thermoset composite. Both papers and resins can be modified to change the finished properties of the final product, and once cured, they will not melt like most thermoplastics. Thermoset epoxy composites are ideal for applications ranging from small switch parts to insulating high voltage tap chargers in power transformers, and other applications requiring electrical insulation properties.
  • 20. • P95TDB-Glass/polyimide P95 consists of woven glass fabric with polyimide resin. The product is engineered to maintain excellent physical properties at 240°C, making it suitable for high temperature applications. It offers a low coefficient of thermal expansion, as well as high mechanical strength and consistent quality. It can be used for structural components, thermal insulators, PCB manufacture and assembly, and high temperature gaskets in petrochemical plants and other applications requiring excellent compressive strength, low moisture absorption, and excellent chemical resistance.
  • 21. Fig 6: Paper/phenolic sheet Fig 7: glass/melamine sheet Fig 8: cotton/epoxy tubes Fig 9: glass/ polyimide
  • 22. Applications in the Electrical Industry • The unique properties of thermoset composites make the materials ideally suited to the rigors of use in the electrical industry. • Phenolic-matrix and melamine composites are used in many electronics including printed circuit boards, gears, and insulators. Insulation, circuit boards, and components requiring a high resistance to heat will often be made from a silicone-based composite. Additional applications include: • Control system components • Circuit breakers • Arc chutes • Arc shields • Terminal blocks and boards • Substation equipment • Microwave antennas • Standoff insulators • Pole line hardware • Printed wiring boards • Switchgear • Panelboards • Server rooms • Metering devices • Lighting components
  • 23. 4. Wearable electronics • Graphene/CNT polymer composites are widely being used to make wearable electronics. • Silver nanofillers in elastomer composite used in wearables. Fig 10: Textile integrated with electronics
  • 24. Fig 11: Graphene/polymer composite in textile batteries
  • 25. Fig 12: graphene/polymer composite in wearable SWNT electonics
  • 26. 5. Electronic sensors • Carbon black polymer odour and flavour sensors for detecting vapours. Used for environmental monitoring to check air quality, crime prevention such as bomb detection, quality control. Reinforcing phase: Dispersed carbon black particles (conc. 2 to 8% by wt.) Reinforcing medium : Polymers ( usually Polystyrene ) Fig 13: Electonic vapour sensor
  • 27. 6. Batteries Fig 14: Li ion battery
  • 28. Fig 15: Working of Li ion battery CHARGING DISCHARGING
  • 29. 7. Satellite electronics mounted on composite panel Fig 16: electronics in satellite
  • 30. 8. Lightning harvester • GC ltd. plans to adapt the high strength-to-weight characteristics of Graphene based composite technology to manufacture ultra-long cables - of circa 8 miles in length. These ultra-long cables would have a highly-conductive coating of graphene - effectively making them lightning rods which can reach up into the clouds !! • Clouds contain a massive amount of energy, in the form of static electricity, or the difference in voltage between the bottom of a cloud and the ground. Lightning occurs when this voltage difference builds up to such an extent that electricity leaps across this gap.
  • 31. • GC ltd. believes it could also collect electrical energy from clouds. The highly-conductive graphene coating on a GC composite cable (held aloft by weather balloons) would be, by far, the path of least resistance for electricity to travel along. As Electricity flows - even the extremely large bursts from lightning strikes - would travel down the graphene-coated cable into a super-capacitor array, which could then release electricity into the power grid in a controlled way. • Preliminary estimates indicate that if this design were to work, GC Lightning Harvesters could be deployed at a lower cost than with nearly every other form of electrical power generation - and, crucially, it would be based on an infinitely renewable energy source, i.e. clouds.