Advertisement
Advertisement

More Related Content

Advertisement
Advertisement

Cur p3 e4-1

  1. Curricolodimatematica E. DALLE SUCCESSIONI MODULARI ALLE LEGGI DI CORRISPONDENZA E4. Risolvere situazioni problematiche aventi per oggetto il confronto tra due progressioni aritmetiche non esplicitate attraverso l’uso della rappresentazione tabulare e saper passare dalla relazione funzionale diretta a quella inversa Riferimenti • Unità 7 • Unità 8 • Unità 12 • GREM • NMP Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 1
  2. Curricolodimatematica Principali obiettivi di apprendimento • Riconoscere la modularità della struttura. • Individuare e rappresentare la relazione tra due progressioni aritmetiche ‘nascoste’ in successioni figurali. • Individuare e rappresentare la relazione tra i numeri d'ordine delle posizioni e i relativi elementi di una successione aritmetica ‘nascosta’ in una successione figurale. • Saper ricavare la funzione (la ‘regola’) che collega coppie di variabili appartenenti a due progressioni aritmetiche.  Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 2
  3. Curricolodimatematica Principali obiettivi di apprendimento • Applicare la 'regola' per trovare un elemento di una progressione aritmetica conoscendo il numero della posizione. • Individuare multipli e divisori di un numero. • Utilizzare le relazioni individuate per prevedere nuovi risultati sulla base di quelli precedenti. • Oggettivare le relazioni tra i dati in opportune situazioni problematiche. • Giustificare la procedura usata per risolvere situazioni problematiche. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 3
  4. Curricolodimatematica 1a. Sapete aiutare Pippo a rispondere alla domanda dell’insegnante? Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 4 Dalla prima primaria alla terza secondaria Pippo, secondo te, Marta come ha costruito le sue figure con quadrati di cartone rossi e blu? Come completeresti l’ultima figura? Ehm…
  5. Curricolodimatematica 1b. Aiutate Marta. Come le suggerireste di fare? Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 5 Dalla prima primaria alla terza secondaria Marta, se avessi voluto costruire una figura con 26 quadrati rossi, quanti blu ti sarebbero serviti? Ora ci penso assieme a Pippo.
  6. Curricolodimatematica 1c. Aiutate Marta e Alice. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 6 Dalla prima primaria alla terza secondaria Questa è più difficile! Scrivete una regola che permetta di trovare i quadrati blu che servono per un qualsiasi numero di quadrati rossi.
  7. Curricolodimatematica 1d. Analizzate le proposte e commentatele. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 7 Dalla prima primaria alla terza secondaria Gli alunni di una classe hanno scritto la regola per trovare il numero dei quadrati blu conoscendo quello dei quadrati rossi. a) Moltiplica per 2 il numero dei quadrati rossi e aggiungi 1 b) Aggiungi 3 al numero dei quadrati rossi. c) Il numero dei quadrati blu è la differenza fra il doppio del numero dei quadrati rossi e 1. d) Il numero dei quadrati blu è il successivo del doppio dei quadrati rossi.
  8. Curricolodimatematica 1e. Alcuni alunni hanno scritto questa regola per trovare il numero dei quadrati rossi conoscendo quello dei quadrati blu. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 8 Dalla prima primaria alla terza secondaria Il numero dei quadrati rossi è uguale al numero dei quadrati blu meno diviso Cerchiamo di capire cosa è stato cancellato. Poi bisogna verificarla sulle figure che ha fatto Marta.
  9. Curricolodimatematica 2. Marta e Pippo hanno costruito dei fregi con dei bastoncini. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 9 Dalla prima primaria alla terza secondaria Bello! Con i bastoncini che avete usato quanti triangoli avete costruito? Mi sto chiedendo quanti triangoli farei con 60 bastoncini. Ragazzi, bisogna che organizziamo la ricerca. Io esagero: e se avessi un numero qualsiasi di bastoncini, quanti triangoli farei?
  10. Curricolodimatematica 3. Alice ha preparato con rami di abete e palline dei decori per il Natale Che spiegazioni credi che darebbe Alice? Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 10 Dalla prima primaria alla terza secondaria Aspetta… sì! 61 palline! Caspita, che veloce! Adesso ti spiego. Bellissimi! E se vuoi usare 30 quante palline ti servirebbero?
  11. Curricolodimatematica 4a. (a) Trova il numero di pallini rossi in una striscia con 27 pallini blu. (b) Trova la regola generale che permette di trovare il numero di pallini rossi con un numero qualsiasi di pallini blu. Esprimila sia in linguaggio naturale che in linguaggio matematico. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 11 Dalla prima primaria alla terza secondaria
  12. Curricolodimatematica 4b. Una classe ha analizzato il messaggio di Brioshi e alla fine ha prodotto quattro scritture. Interpretale e valutale. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 Dalla prima primaria alla terza secondaria a) Se tolgo 2 al numero dei pallini rossi e poi divido per due trovo il numero dei pallini blu. b) Il numero dei pallini blu è il doppio della differenza tra il numero dei pallini rossi e 2. c) Il numero dei pallini blu è la semidifferenza fra il numero dei pallini rossi e 2. d) Per conoscere il numero dei pallini blu devo dividere il numero di quelli rossi per 2 e poi sottrarre 2. …
  13. Curricolodimatematica 5a. Ogni pallino è collegato a tutti gli altri. Trova una regola generale che ti permetta di trovare il numero dei segmenti qualunque sia il numero dei pallini che essi uniscono. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 13 Dalla prima primaria alla terza secondaria …
  14. Curricolodimatematica 5b. La classe sta cercando di esprimere la relazione fra il numero dei pallini e quello dei segmenti che li collegano tutti fra loro. A quale disegno potrebbe pensare Bobo? Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 14 Dalla prima primaria alla terza secondaria …Ho fatto il disegno con 7 pallini ma mi sono confusa… Avrei un’idea per fare un disegno più chiaro che ci aiuti a trovare la legge.
  15. Curricolodimatematica 6a. Nella sequenza di cui queste sono le prime figure: Scrivi per Brioshi tre leggi che esprimano: (a) iI numero dei triangoli rossi di una figura in funzione della sua posizione; (b) il numero di tutti i triangoli bianchi e rossi di una figura in relazione al numero di triangoli rossi di un lato; Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 15 Dalla prima primaria alla terza secondaria
  16. Curricolodimatematica 6b. (c) Individua il numero di posto di questa figura. (d) Applica ad essa le due leggi che hai trovato in precedenza. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 16 Dalla prima primaria alla terza secondaria
  17. Curricolodimatematica 7. Un’amministrazione ha adottato un criterio per costruire pavimentazioni quadrate, con lastroni di due colori diversi, in tutti gli spazi pubblici della città, dai più piccoli ai più grandi: Le ‘L’ più esterne (segnate con una linea rossa) prendono il nome di gnomoni.  Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 17 Dalla prima primaria alla terza secondaria …
  18. Curricolodimatematica Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 18 Dalla prima primaria alla terza secondaria 7a. Ecco alcuni esempi di pavimentazioni in un parco: Trova una legge generale che permetta di trovare il numero dei lastroni in pavimentazioni quadrate di dimensioni qualsiasi.
  19. Curricolodimatematica 7b. Ha ragione il signore? È ‘quasi raddoppiato’? Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 19 Dalla prima primaria alla terza secondaria Bella, la pavimentazione di questa piccola piazza quadrata. Se l’avessero fatta con tre gnomoni in più sarebbe stata ancora più bella. Mmm… ma sai quanti lastroni avrebbero dovuto aggiungere? In effetti il numero sarebbe quasi raddoppiato, ma vuoi mettere?
  20. Curricolodimatematica 7c. Aiuta a rispondere alla domanda. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 20 Dalla prima primaria alla terza secondaria Sai la Piazza Maggiore? Potrebbe contenere un quadrato di almeno 100 lastroni di lato. Hai idea di quanto sarebbe lungo lo gnomone? Mah… ci vorrebbe un bel numero di lastroni.
  21. Curricolodimatematica 7d. I cittadini hanno chiesto che in ogni pavimentazione lo gnomone venga adibito ad aiuola. I tecnici stanno cercando una legge che permetta di trovare la lunghezza dello gnomone in una pavimentazione di dimensione qualsiasi. Aiutali a trovare la regola. Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 21 Dalla prima primaria alla terza secondaria
  22. Curricolodimatematica Passa a: Copertina Obiettivi Prim: 1 2 3 4 5 Sec 1°: 1 2 3 22 Dalla prima primaria alla terza secondaria 8. Brioshi ha inviato questa sfida: Individuate quale successione presenta la legge e argomentate la vostra scelta. a=3b-3 ×× ×××× ×××××× ×××××××× … A ××× ×××××× ××××××××× ×××××××××××× … B × ×× ××× ×××× … C
Advertisement