SlideShare a Scribd company logo
1 of 2
Download to read offline
Stewardship	
  Maturity	
  Matrix	
  for	
  Digital	
  Environmental	
  Data	
  Products	
  	
  	
  
Maturity	
  	
  Scale	
   Preservability	
   Accessibility	
   Usability	
  
Produc?on	
  
Sustainability	
  
Data	
  Quality	
  
Assurance	
  
Data	
  Quality	
  
Control/Monitoring	
  
Data	
  Quality	
  
Assessment	
  
Transparency	
  /
Traceability	
   Data	
  Integrity	
  
Level	
  1	
  –	
  	
  
Ad	
  Hoc	
  
Not	
  Managed	
  
Any	
  storage	
  loca.on	
  
Data	
  only	
  
Not	
  publicly	
  available	
  
Person-­‐to-­‐person	
  
Extensive	
  product-­‐
specific	
  knowledge	
  
required	
  
No	
  documenta.on	
  
online	
  
Ad	
  Hoc	
  or	
  Not	
  
applicable	
  
No	
  obliga.on	
  or	
  
deliverable	
  
requirement	
  
Data	
  quality	
  assurance	
  
(DQA)	
  procedure	
  
unknown	
  or	
  none	
  
None	
  or	
  	
  
Sampling	
  	
  unknown	
  or	
  spoEy	
  
Analysis	
  unknown	
  or	
  random	
  
in	
  .me	
  	
  
	
  Algorithm/method/
model	
  theore.cal	
  
basis	
  assessed	
  
(method	
  and	
  results	
  
online)	
  
	
  
Limited	
  product	
  informa.on	
  
available	
  
Person-­‐to-­‐person	
  
Unknown	
  or	
  no	
  data	
  
ingest	
  integrity	
  check	
  
Level	
  2	
  -­‐	
  
Minimal	
  
Managed	
  
Limited	
  
Non-­‐designated	
  
repository	
  	
  	
  
Redundancy	
  
Limited	
  archiving	
  
metadata	
  	
  
Publicly	
  available	
  	
  
	
  Direct	
  file	
  download	
  (e.g.,	
  
via	
  anonymous	
  FTP	
  server)	
  
Collec.on/dataset	
  level	
  
searchable	
  	
  
Non-­‐standard	
  	
  
data	
  format	
  
Limited	
  documenta.on	
  
(e.g.,	
  user’s	
  guide)	
  
online	
  
Short-­‐term	
  
	
  Individual	
  PI’s	
  
commitment	
  (grant	
  
obliga.ons)	
  
Ad	
  Hoc	
  and	
  random	
  
DQA	
  procedure	
  not	
  
defined	
  and	
  documented	
  
	
  
	
  
Sampling	
  and	
  analysis	
  are	
  
regular	
  	
  
in	
  .me	
  and	
  space	
  
Limited	
  product-­‐specific	
  
metrics	
  defined	
  &	
  
implemented	
  
Level	
  1	
  +	
  
Research	
  product	
  
assessed	
  (method	
  and	
  
results	
  online)	
  
Product	
  informa.on	
  available	
  in	
  
literature	
  
Data	
  ingest	
  integrity	
  
verifiable	
  	
  
(e.g.,	
  checksum	
  
technology)	
  
Level	
  3	
  -­‐	
  
Intermediate	
  
Managed	
  
Defined,	
  Par?ally	
  
Implemented	
  
Designated	
  archive	
  
Redundancy	
  
Community-­‐standard	
  
archiving	
  metadata	
  	
  
Conforming	
  to	
  
limited	
  archiving	
  
process	
  standards	
  	
  
Level	
  2	
  +	
  
Non-­‐standard	
  data	
  service	
  
Limited	
  data	
  server	
  
performance	
  
Granule/file	
  level	
  
searchable	
  
Limited	
  search	
  metrics	
  
Community	
  Standard-­‐
based	
  interoperable	
  
format	
  &	
  metadata	
  	
  
Documenta.on	
  (e.g.,	
  
source	
  code,	
  product	
  
algorithm	
  document,	
  
processing	
  or/and	
  data	
  
flow	
  diagram)	
  online	
  
Medium-­‐term	
  
	
  Ins.tu.onal	
  
commitment	
  
(contractual	
  
deliverables	
  with	
  specs	
  
and	
  schedule	
  defined)	
  	
  
DQA	
  procedure	
  defined	
  
and	
  documented	
  and	
  
par.ally	
  implemented	
  
Level	
  2	
  +	
  	
  
Sampling	
  and	
  analysis	
  are	
  	
  
frequent	
  and	
  systema.c	
  but	
  
not	
  automa.c	
  
Community	
  metrics	
  defined	
  
and	
  par.ally	
  implemented	
  
Procedure	
  documented	
  	
  and	
  
available	
  online	
  
	
  Level	
  2	
  +	
  	
  
Opera.onal	
  product	
  
assessed	
  (method	
  and	
  
results	
  online)	
  
Algorithm/method/model	
  
Theore.cal	
  Basis	
  Document	
  
(ATBD)	
  &	
  source	
  code	
  online	
  
Dataset	
  configura.on	
  managed	
  
(CM)	
  	
  
Unique	
  Object	
  Iden.fier	
  (OID)	
  
assigned	
  (dataset,	
  
documenta.on,	
  source	
  code)	
  
Data	
  cita.on	
  tracked	
  	
  
(e.g.,	
  u.lizing	
  Digital	
  Object	
  
Iden.fier	
  (DOI)	
  system)	
  
Level	
  2	
  +	
  
Data	
  archive	
  integrity	
  
verifiable	
  	
  
Level	
  4	
  -­‐	
  
Advanced	
  
Managed	
  
Well-­‐Defined,	
  
Fully	
  
Implemented	
  
Level	
  3	
  +	
  
Conforming	
  to	
  
community	
  archiving	
  
standards	
  
Level	
  3	
  +	
  
Community-­‐standard	
  data	
  
services	
  
Enhanced	
  data	
  server	
  
performance	
  	
  
Conforming	
  to	
  community	
  
search	
  metrics	
  
Dissemina.on	
  report	
  
metrics	
  defined	
  and	
  
implemented	
  internally	
  
Level	
  3	
  +	
  
Basic	
  capability	
  (e.g.,	
  
subse_ng,	
  aggrega.ng)	
  
&	
  data	
  characteriza.on	
  
(overall/global,	
  e.g.,	
  
climatology,	
  error	
  
es.mates)	
  available	
  
online	
  
Long-­‐term	
  
Ins.tu.onal	
  
commitment	
  
Product	
  improvement	
  
process	
  in	
  place	
  
DQA	
  procedure	
  well	
  
documented,	
  fully	
  
implemented	
  and	
  
available	
  online	
  with	
  
master	
  reference	
  data	
  
Limited	
  data	
  quality	
  
assurance	
  metadata	
  
	
  
Level	
  3	
  +	
  
Anomaly	
  detec.on	
  procedure	
  
well-­‐documented	
  and	
  fully	
  
implemented	
  using	
  
community	
  metrics,	
  
automa.c,	
  tracked	
  and	
  
reported	
  
Limited	
  quality	
  monitoring	
  
metadata	
  
Level	
  3	
  +	
  	
  
Quality	
  metadata	
  
assessed	
  (method	
  and	
  
results	
  online)	
  
Limited	
  quality	
  
assessment	
  metadata	
  
Level	
  3	
  +	
  
Opera.onal	
  Algorithm	
  
Descrip.on	
  (OAD)	
  online,	
  OID	
  
assigned,	
  and	
  under	
  CM	
  	
  
Level	
  3	
  +	
  	
  
	
  Data	
  access	
  integrity	
  
verifiable	
  	
  
	
  
Conforming	
  to	
  
community	
  data	
  integrity	
  
technology	
  standard	
  	
  
Level	
  5	
  -­‐	
  
Op?mal	
  
Level	
  4	
  +	
  
Measured	
  ,	
  
Controlled	
  ,	
  
Audit	
  
Level	
  4	
  +	
  	
  
Archiving	
  process	
  
performance	
  
controlled,	
  
measured,	
  and	
  
audited	
  
Future	
  archiving	
  
standard	
  changes	
  
planned	
  
Level	
  	
  4	
  +	
  	
  
Dissemina.on	
  reports	
  
available	
  online	
  
Future	
  technology	
  and	
  
standard	
  changes	
  planned	
  
Level	
  4	
  +	
  	
  
Enhanced	
  online	
  
capability	
  (e.g.,	
  
visualiza.on,	
  mul.ple	
  
data	
  formats)	
  	
  
Community	
  metrics	
  of	
  
data	
  characteriza.on	
  
(regional/cell)	
  	
  online	
  
External	
  ranking	
  
Level	
  4	
  +	
  
Na.onal	
  or	
  
interna.onal	
  
commitment	
  
Changes	
  for	
  
technology	
  planned	
  	
  
Level	
  4	
  +	
  	
  
DQA	
  procedure	
  
monitored	
  and	
  reported	
  
Conforming	
  to	
  
community	
  quality	
  
metadata	
  &	
  standards	
  
External	
  review	
  
Level	
  4	
  +	
  	
  
Cross-­‐valida.on	
  of	
  temporal	
  
&	
  spa.al	
  characteris.cs	
  
Physical	
  consistency	
  check	
  
Conforming	
  to	
  community	
  
quality	
  metadata	
  &	
  standards	
  
Dynamic	
  providers/users	
  
feedback	
  in	
  place	
  
Level	
  4	
  +	
  
Assessment	
  performed	
  
on	
  a	
  recurring	
  basis	
  
Conforming	
  to	
  
community	
  quality	
  
metadata	
  &	
  standards	
  
External	
  ranking	
  
Level	
  4	
  +	
  
System	
  informa.on	
  online	
  
Complete	
  data	
  provenance	
  
available	
  online	
  
Level	
  4	
  +	
  	
  
	
  Data	
  authen.city	
  
verifiable	
  	
  
(e.g.,	
  data	
  signature	
  
technology)	
  
Performance	
  of	
  data	
  
integrity	
  check	
  monitored	
  
and	
  reported	
  
Document	
  ID:	
  NCDC-­‐CICS-­‐SMM_0001	
  
Version:	
  12/09/2014	
  Rev.	
  1	
   Dataset	
  Name	
   Maturity	
  Level	
  as	
  of	
  
mm/dd/yyyy	
  
Dataset	
  Informa.on:	
  URL	
  Goes	
  Here	
  	
  	
  
Dataset	
  POC:	
  Name	
  &	
  E-­‐mail	
  Here	
  
	
  	
  
SMM	
  POC:	
  Ge.Peng@noaa.gov	
  
SMM	
  Assessment	
  POC:	
  Name	
  &	
  E-­‐mail	
  Here	
  
To	
  cite	
  this	
  work	
  	
  	
  
Peng,	
  G.,	
  J.L.	
  PriveEe,	
  E.J.	
  Kearns,	
  N.A.	
  Ritchey,	
  and	
  S.	
  Ansari,	
  2015:	
  A	
  unified	
  framework	
  for	
  
measuring	
  stewardship	
  prac.ces	
  applied	
  to	
  digital	
  environmental	
  datasets.	
  Data	
  Science	
  
Journal,	
  13.	
  	
  hEp://dx.doi.org/10.2481/dsj.14-­‐049.	
  
A	
  self-­‐assessment	
  template	
  using	
  the	
  latest	
  NCEI/CICS-­‐NC	
  Scien.fic	
  Data	
  Stewardship	
  
Maturity	
  Matrix	
  (DSMM),	
  a	
  DSMM	
  user	
  quick	
  start-­‐up	
  guide	
  (NOAA	
  internal	
  version),	
  and	
  
a	
  DSMM	
  graphics	
  generator	
  are	
  available	
  at:	
  
hEp://dx.doi.org/10.6084/m9.figshare.1211954	
  	
  
hEp://.nyurl.com/DSMMguide	
  
hEps://dx.doi.org/10.6084/m9.figshare.3458450	
  	
  
High-­‐level	
  background	
  on	
  the	
  scien.fic	
  data	
  stewardship	
  maturity	
  matrix	
  can	
  be	
  found	
  at:	
  
	
  hEp://www.slideshare.net/gepeng86/scien.fic-­‐data-­‐stewardship-­‐maturity-­‐matrix	
  	
  	
  
The	
  scope	
  and	
  ra.onale	
  of	
  the	
  stewardship	
  maturity	
  assessment	
  model	
  and	
  its	
  nine	
  key	
  
components	
  are	
  described	
  in	
  Peng	
  et	
  al.	
  (2015),	
  which	
  can	
  be	
  accessed	
  at	
  :	
  
hEp://datascience.codata.org/ar.cles/abstract/10.2481/dsj.14-­‐049	
  

More Related Content

What's hot

Clinical informatics data architect v2 0
Clinical informatics data architect v2 0Clinical informatics data architect v2 0
Clinical informatics data architect v2 0danielq2
 
Applying a User-Centered Design Approach to Improve Data Use in Decision Making
Applying a User-Centered Design Approach to Improve Data Use in Decision MakingApplying a User-Centered Design Approach to Improve Data Use in Decision Making
Applying a User-Centered Design Approach to Improve Data Use in Decision MakingMEASURE Evaluation
 
Building a Data Quality Program from Scratch
Building a Data Quality Program from ScratchBuilding a Data Quality Program from Scratch
Building a Data Quality Program from Scratchdmurph4
 
Enhancing educational data quality in heterogeneous learning contexts using p...
Enhancing educational data quality in heterogeneous learning contexts using p...Enhancing educational data quality in heterogeneous learning contexts using p...
Enhancing educational data quality in heterogeneous learning contexts using p...Alex Rayón Jerez
 
Data quality architecture
Data quality architectureData quality architecture
Data quality architectureanicewick
 
VTerry-Resume-July2015
VTerry-Resume-July2015VTerry-Resume-July2015
VTerry-Resume-July2015Vickie Terry
 
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series Data
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series DataSharing Science Data: Semantically Reimagining the IUPAC Solubility Series Data
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series DataStuart Chalk
 
Whitehead Seminar 5/2
Whitehead Seminar 5/2Whitehead Seminar 5/2
Whitehead Seminar 5/2Physion
 
Brightspace Analytics Core
Brightspace Analytics CoreBrightspace Analytics Core
Brightspace Analytics CoreD2L Barry
 
SOP for Data Owners - Quality
SOP for Data Owners - QualitySOP for Data Owners - Quality
SOP for Data Owners - QualityMichel Meehan
 

What's hot (12)

Clinical informatics data architect v2 0
Clinical informatics data architect v2 0Clinical informatics data architect v2 0
Clinical informatics data architect v2 0
 
Applying a User-Centered Design Approach to Improve Data Use in Decision Making
Applying a User-Centered Design Approach to Improve Data Use in Decision MakingApplying a User-Centered Design Approach to Improve Data Use in Decision Making
Applying a User-Centered Design Approach to Improve Data Use in Decision Making
 
Building a Data Quality Program from Scratch
Building a Data Quality Program from ScratchBuilding a Data Quality Program from Scratch
Building a Data Quality Program from Scratch
 
Enhancing educational data quality in heterogeneous learning contexts using p...
Enhancing educational data quality in heterogeneous learning contexts using p...Enhancing educational data quality in heterogeneous learning contexts using p...
Enhancing educational data quality in heterogeneous learning contexts using p...
 
ORIS iStar Update
ORIS iStar UpdateORIS iStar Update
ORIS iStar Update
 
Data quality architecture
Data quality architectureData quality architecture
Data quality architecture
 
VTerry-Resume-July2015
VTerry-Resume-July2015VTerry-Resume-July2015
VTerry-Resume-July2015
 
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series Data
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series DataSharing Science Data: Semantically Reimagining the IUPAC Solubility Series Data
Sharing Science Data: Semantically Reimagining the IUPAC Solubility Series Data
 
Whitehead Seminar 5/2
Whitehead Seminar 5/2Whitehead Seminar 5/2
Whitehead Seminar 5/2
 
Brightspace Analytics Core
Brightspace Analytics CoreBrightspace Analytics Core
Brightspace Analytics Core
 
Unit2
Unit2Unit2
Unit2
 
SOP for Data Owners - Quality
SOP for Data Owners - QualitySOP for Data Owners - Quality
SOP for Data Owners - Quality
 

Viewers also liked

Digital Workplace Maturity Model
Digital Workplace Maturity ModelDigital Workplace Maturity Model
Digital Workplace Maturity ModelSam Marshall
 
Building an effective data stewardship org 2014
Building an effective data stewardship org 2014Building an effective data stewardship org 2014
Building an effective data stewardship org 2014blacng
 
Data Stewardship for SPATIAL/IsoCamp 2014
Data Stewardship for SPATIAL/IsoCamp 2014Data Stewardship for SPATIAL/IsoCamp 2014
Data Stewardship for SPATIAL/IsoCamp 2014Carly Strasser
 
Data Stewardship for Researchers, SPATIAL course
Data Stewardship for Researchers, SPATIAL courseData Stewardship for Researchers, SPATIAL course
Data Stewardship for Researchers, SPATIAL courseCarly Strasser
 
From Data Sharing to Data Stewardship
From Data Sharing to Data StewardshipFrom Data Sharing to Data Stewardship
From Data Sharing to Data StewardshipICPSR
 
Data stewardship a primer
Data stewardship   a primerData stewardship   a primer
Data stewardship a primerGed Mirfin
 
Business Semantics for Data Governance and Stewardship
Business Semantics for Data Governance and StewardshipBusiness Semantics for Data Governance and Stewardship
Business Semantics for Data Governance and StewardshipPieter De Leenheer
 
Fasten you seatbelt and listen to the Data Steward
Fasten you seatbelt and listen to the Data StewardFasten you seatbelt and listen to the Data Steward
Fasten you seatbelt and listen to the Data StewardJean-Pierre Riehl
 
Digital Citizenship & Internet Maturity for Schools
Digital Citizenship & Internet Maturity for SchoolsDigital Citizenship & Internet Maturity for Schools
Digital Citizenship & Internet Maturity for SchoolsRaghu Pandey
 
Data Systems Integration & Business Value Pt. 1: Metadata
Data Systems Integration & Business Value Pt. 1: MetadataData Systems Integration & Business Value Pt. 1: Metadata
Data Systems Integration & Business Value Pt. 1: MetadataDATAVERSITY
 
Successful stewardship Presentation
Successful stewardship PresentationSuccessful stewardship Presentation
Successful stewardship PresentationCertus Solutions
 
The Digital Workplace Maturity Model: Moving From Publishing to People
The Digital Workplace Maturity Model: Moving From Publishing to PeopleThe Digital Workplace Maturity Model: Moving From Publishing to People
The Digital Workplace Maturity Model: Moving From Publishing to PeopleThoughtFarmer
 
IBM InfoSphere Stewardship Center for iis dqec
IBM InfoSphere Stewardship Center for iis dqecIBM InfoSphere Stewardship Center for iis dqec
IBM InfoSphere Stewardship Center for iis dqecIBMInfoSphereUGFR
 
Cff data governance best practices
Cff data governance best practicesCff data governance best practices
Cff data governance best practicesBeth Fitzpatrick
 
Digital Maturity Model - prototype
Digital Maturity Model - prototypeDigital Maturity Model - prototype
Digital Maturity Model - prototypeSteph Gray
 
Transform DMI 2015: Stop thinking silos, start thinking eco-systems
Transform DMI 2015: Stop thinking silos, start thinking eco-systemsTransform DMI 2015: Stop thinking silos, start thinking eco-systems
Transform DMI 2015: Stop thinking silos, start thinking eco-systemsTransformUK
 
Iom summit 2014 keynote digital transformation lars reppesgaard
Iom summit 2014 keynote digital transformation lars reppesgaard Iom summit 2014 keynote digital transformation lars reppesgaard
Iom summit 2014 keynote digital transformation lars reppesgaard Lars Reppesgaard
 
Digital Maturity - A Client & Agency Perspective
Digital Maturity - A Client & Agency PerspectiveDigital Maturity - A Client & Agency Perspective
Digital Maturity - A Client & Agency Perspectivedelissat
 

Viewers also liked (20)

Digital Workplace Maturity Model
Digital Workplace Maturity ModelDigital Workplace Maturity Model
Digital Workplace Maturity Model
 
Building an effective data stewardship org 2014
Building an effective data stewardship org 2014Building an effective data stewardship org 2014
Building an effective data stewardship org 2014
 
Data Stewardship for SPATIAL/IsoCamp 2014
Data Stewardship for SPATIAL/IsoCamp 2014Data Stewardship for SPATIAL/IsoCamp 2014
Data Stewardship for SPATIAL/IsoCamp 2014
 
Data Stewardship for Researchers, SPATIAL course
Data Stewardship for Researchers, SPATIAL courseData Stewardship for Researchers, SPATIAL course
Data Stewardship for Researchers, SPATIAL course
 
From Data Sharing to Data Stewardship
From Data Sharing to Data StewardshipFrom Data Sharing to Data Stewardship
From Data Sharing to Data Stewardship
 
Data stewardship a primer
Data stewardship   a primerData stewardship   a primer
Data stewardship a primer
 
Business Semantics for Data Governance and Stewardship
Business Semantics for Data Governance and StewardshipBusiness Semantics for Data Governance and Stewardship
Business Semantics for Data Governance and Stewardship
 
Fasten you seatbelt and listen to the Data Steward
Fasten you seatbelt and listen to the Data StewardFasten you seatbelt and listen to the Data Steward
Fasten you seatbelt and listen to the Data Steward
 
Digital Citizenship & Internet Maturity for Schools
Digital Citizenship & Internet Maturity for SchoolsDigital Citizenship & Internet Maturity for Schools
Digital Citizenship & Internet Maturity for Schools
 
Data Systems Integration & Business Value Pt. 1: Metadata
Data Systems Integration & Business Value Pt. 1: MetadataData Systems Integration & Business Value Pt. 1: Metadata
Data Systems Integration & Business Value Pt. 1: Metadata
 
Successful stewardship Presentation
Successful stewardship PresentationSuccessful stewardship Presentation
Successful stewardship Presentation
 
The Digital Workplace Maturity Model: Moving From Publishing to People
The Digital Workplace Maturity Model: Moving From Publishing to PeopleThe Digital Workplace Maturity Model: Moving From Publishing to People
The Digital Workplace Maturity Model: Moving From Publishing to People
 
Interoperability and the Road to Digital Maturity
 Interoperability and the Road to Digital Maturity Interoperability and the Road to Digital Maturity
Interoperability and the Road to Digital Maturity
 
IBM InfoSphere Stewardship Center for iis dqec
IBM InfoSphere Stewardship Center for iis dqecIBM InfoSphere Stewardship Center for iis dqec
IBM InfoSphere Stewardship Center for iis dqec
 
Cff data governance best practices
Cff data governance best practicesCff data governance best practices
Cff data governance best practices
 
Digital Maturity Model - prototype
Digital Maturity Model - prototypeDigital Maturity Model - prototype
Digital Maturity Model - prototype
 
Transform DMI 2015: Stop thinking silos, start thinking eco-systems
Transform DMI 2015: Stop thinking silos, start thinking eco-systemsTransform DMI 2015: Stop thinking silos, start thinking eco-systems
Transform DMI 2015: Stop thinking silos, start thinking eco-systems
 
Iom summit 2014 keynote digital transformation lars reppesgaard
Iom summit 2014 keynote digital transformation lars reppesgaard Iom summit 2014 keynote digital transformation lars reppesgaard
Iom summit 2014 keynote digital transformation lars reppesgaard
 
Digital Maturity
Digital MaturityDigital Maturity
Digital Maturity
 
Digital Maturity - A Client & Agency Perspective
Digital Maturity - A Client & Agency PerspectiveDigital Maturity - A Client & Agency Perspective
Digital Maturity - A Client & Agency Perspective
 

Similar to Scientific Data Stewardship Maturity Matrix

Peng Privette SMM_AMS2014_P695
Peng Privette SMM_AMS2014_P695Peng Privette SMM_AMS2014_P695
Peng Privette SMM_AMS2014_P695Ge Peng
 
Optimising Clinical Trials Monitoring Data review - Neill Barron
Optimising Clinical Trials Monitoring Data review - Neill BarronOptimising Clinical Trials Monitoring Data review - Neill Barron
Optimising Clinical Trials Monitoring Data review - Neill BarronNeill Barron
 
Data Integrity webinar - Essentials & Solutions
Data Integrity webinar - Essentials & SolutionsData Integrity webinar - Essentials & Solutions
Data Integrity webinar - Essentials & Solutionspi
 
Data Recognition Corporation
Data Recognition CorporationData Recognition Corporation
Data Recognition Corporationjleinen
 
Systems Analysis Midterm Lesson
Systems Analysis Midterm LessonSystems Analysis Midterm Lesson
Systems Analysis Midterm LessonMaulen Bale
 
Building a Next Generation Clinical and Scientific Data Management Solution
Building a Next Generation Clinical and Scientific Data Management SolutionBuilding a Next Generation Clinical and Scientific Data Management Solution
Building a Next Generation Clinical and Scientific Data Management SolutionSaama
 
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...DATAVERSITY
 
Notes On Intranet Implementation And Roadmap
Notes On Intranet Implementation And RoadmapNotes On Intranet Implementation And Roadmap
Notes On Intranet Implementation And RoadmapAlan McSweeney
 
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...Kathmandu Living Labs
 
Moore RDAP11 Policy-based Data Management
Moore RDAP11 Policy-based Data ManagementMoore RDAP11 Policy-based Data Management
Moore RDAP11 Policy-based Data ManagementASIS&T
 
Testing insights from data lakes
Testing insights from data lakesTesting insights from data lakes
Testing insights from data lakesshivindkaur
 
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...EOSC-hub project
 
RDA FAIR Data Maturity Model
RDA FAIR Data Maturity ModelRDA FAIR Data Maturity Model
RDA FAIR Data Maturity ModelOpenAIRE
 
Quality results esdin_ica
Quality results esdin_icaQuality results esdin_ica
Quality results esdin_icaAntti Jakobsson
 
LOP – Capturing and Linking Open Provenance on LOD Cycle
LOP – Capturing and Linking Open Provenance on LOD CycleLOP – Capturing and Linking Open Provenance on LOD Cycle
LOP – Capturing and Linking Open Provenance on LOD Cyclerogers.rj
 
Using Feedback from Data Consumers to Capture Quality Information on Environm...
Using Feedback from Data Consumers to Capture Quality Information on Environm...Using Feedback from Data Consumers to Capture Quality Information on Environm...
Using Feedback from Data Consumers to Capture Quality Information on Environm...Anusuriya Devaraju
 

Similar to Scientific Data Stewardship Maturity Matrix (20)

Peng Privette SMM_AMS2014_P695
Peng Privette SMM_AMS2014_P695Peng Privette SMM_AMS2014_P695
Peng Privette SMM_AMS2014_P695
 
Optimising Clinical Trials Monitoring Data review - Neill Barron
Optimising Clinical Trials Monitoring Data review - Neill BarronOptimising Clinical Trials Monitoring Data review - Neill Barron
Optimising Clinical Trials Monitoring Data review - Neill Barron
 
Quality key users
Quality key usersQuality key users
Quality key users
 
Data Integrity webinar - Essentials & Solutions
Data Integrity webinar - Essentials & SolutionsData Integrity webinar - Essentials & Solutions
Data Integrity webinar - Essentials & Solutions
 
Data Recognition Corporation
Data Recognition CorporationData Recognition Corporation
Data Recognition Corporation
 
Systems Analysis Midterm Lesson
Systems Analysis Midterm LessonSystems Analysis Midterm Lesson
Systems Analysis Midterm Lesson
 
Building a Next Generation Clinical and Scientific Data Management Solution
Building a Next Generation Clinical and Scientific Data Management SolutionBuilding a Next Generation Clinical and Scientific Data Management Solution
Building a Next Generation Clinical and Scientific Data Management Solution
 
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...
Conformed Dimensions of Data Quality – An Organized Approach to Data Quality ...
 
Notes On Intranet Implementation And Roadmap
Notes On Intranet Implementation And RoadmapNotes On Intranet Implementation And Roadmap
Notes On Intranet Implementation And Roadmap
 
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...
Prof. Melinda Laituri, Colorado State University | Map Data Integrity | SotM ...
 
Moore RDAP11 Policy-based Data Management
Moore RDAP11 Policy-based Data ManagementMoore RDAP11 Policy-based Data Management
Moore RDAP11 Policy-based Data Management
 
Testing insights from data lakes
Testing insights from data lakesTesting insights from data lakes
Testing insights from data lakes
 
Ncicbiit
NcicbiitNcicbiit
Ncicbiit
 
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...
Updates on the FAIR Data Maturity Model RDA Working Group & the DG RTD FAIR i...
 
Ws For Aq
Ws For AqWs For Aq
Ws For Aq
 
RDA FAIR Data Maturity Model
RDA FAIR Data Maturity ModelRDA FAIR Data Maturity Model
RDA FAIR Data Maturity Model
 
CET DQ Tool Selection - Executive
CET DQ Tool Selection - ExecutiveCET DQ Tool Selection - Executive
CET DQ Tool Selection - Executive
 
Quality results esdin_ica
Quality results esdin_icaQuality results esdin_ica
Quality results esdin_ica
 
LOP – Capturing and Linking Open Provenance on LOD Cycle
LOP – Capturing and Linking Open Provenance on LOD CycleLOP – Capturing and Linking Open Provenance on LOD Cycle
LOP – Capturing and Linking Open Provenance on LOD Cycle
 
Using Feedback from Data Consumers to Capture Quality Information on Environm...
Using Feedback from Data Consumers to Capture Quality Information on Environm...Using Feedback from Data Consumers to Capture Quality Information on Environm...
Using Feedback from Data Consumers to Capture Quality Information on Environm...
 

More from Ge Peng

Improving Stewardship of Scientific Data Through Use of a Maturity Matrix
Improving Stewardship of Scientific Data Through Use of a Maturity MatrixImproving Stewardship of Scientific Data Through Use of a Maturity Matrix
Improving Stewardship of Scientific Data Through Use of a Maturity MatrixGe Peng
 
Stewards - Knowledge and Communication Hub
Stewards - Knowledge and Communication HubStewards - Knowledge and Communication Hub
Stewards - Knowledge and Communication HubGe Peng
 
New Paradigm for Ensuring and Improving Data Quality and Usability
New Paradigm for Ensuring and Improving Data Quality and UsabilityNew Paradigm for Ensuring and Improving Data Quality and Usability
New Paradigm for Ensuring and Improving Data Quality and UsabilityGe Peng
 
Service Tools and Social Media Data Sharing Use Case
Service Tools and Social Media Data Sharing Use CaseService Tools and Social Media Data Sharing Use Case
Service Tools and Social Media Data Sharing Use CaseGe Peng
 
Non Functional Requirements for Climate Data Records
Non Functional Requirements for Climate Data RecordsNon Functional Requirements for Climate Data Records
Non Functional Requirements for Climate Data RecordsGe Peng
 
Peng etal UPQ_AMS2014_P332
Peng etal UPQ_AMS2014_P332Peng etal UPQ_AMS2014_P332
Peng etal UPQ_AMS2014_P332Ge Peng
 

More from Ge Peng (6)

Improving Stewardship of Scientific Data Through Use of a Maturity Matrix
Improving Stewardship of Scientific Data Through Use of a Maturity MatrixImproving Stewardship of Scientific Data Through Use of a Maturity Matrix
Improving Stewardship of Scientific Data Through Use of a Maturity Matrix
 
Stewards - Knowledge and Communication Hub
Stewards - Knowledge and Communication HubStewards - Knowledge and Communication Hub
Stewards - Knowledge and Communication Hub
 
New Paradigm for Ensuring and Improving Data Quality and Usability
New Paradigm for Ensuring and Improving Data Quality and UsabilityNew Paradigm for Ensuring and Improving Data Quality and Usability
New Paradigm for Ensuring and Improving Data Quality and Usability
 
Service Tools and Social Media Data Sharing Use Case
Service Tools and Social Media Data Sharing Use CaseService Tools and Social Media Data Sharing Use Case
Service Tools and Social Media Data Sharing Use Case
 
Non Functional Requirements for Climate Data Records
Non Functional Requirements for Climate Data RecordsNon Functional Requirements for Climate Data Records
Non Functional Requirements for Climate Data Records
 
Peng etal UPQ_AMS2014_P332
Peng etal UPQ_AMS2014_P332Peng etal UPQ_AMS2014_P332
Peng etal UPQ_AMS2014_P332
 

Recently uploaded

Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...ThinkInnovation
 
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...yulianti213969
 
Displacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second DerivativesDisplacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second Derivatives23050636
 
The Significance of Transliteration Enhancing
The Significance of Transliteration EnhancingThe Significance of Transliteration Enhancing
The Significance of Transliteration Enhancingmohamed Elzalabany
 
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...Valters Lauzums
 
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...ssuserf63bd7
 
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarj
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarjSCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarj
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarjadimosmejiaslendon
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证ppy8zfkfm
 
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证pwgnohujw
 
What is Insertion Sort. Its basic information
What is Insertion Sort. Its basic informationWhat is Insertion Sort. Its basic information
What is Insertion Sort. Its basic informationmuqadasqasim10
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeBoston Institute of Analytics
 
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...siskavia95
 
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证dq9vz1isj
 
原件一样伦敦国王学院毕业证成绩单留信学历认证
原件一样伦敦国王学院毕业证成绩单留信学历认证原件一样伦敦国王学院毕业证成绩单留信学历认证
原件一样伦敦国王学院毕业证成绩单留信学历认证pwgnohujw
 
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证acoha1
 
Formulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfFormulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfRobertoOcampo24
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxStephen266013
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshareraiaryan448
 
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证zifhagzkk
 

Recently uploaded (20)

Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
 
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
obat aborsi Bontang wa 081336238223 jual obat aborsi cytotec asli di Bontang6...
 
Displacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second DerivativesDisplacement, Velocity, Acceleration, and Second Derivatives
Displacement, Velocity, Acceleration, and Second Derivatives
 
The Significance of Transliteration Enhancing
The Significance of Transliteration EnhancingThe Significance of Transliteration Enhancing
The Significance of Transliteration Enhancing
 
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...
Data Analytics for Digital Marketing Lecture for Advanced Digital & Social Me...
 
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
Statistics Informed Decisions Using Data 5th edition by Michael Sullivan solu...
 
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotecAbortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
 
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarj
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarjSCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarj
SCI8-Q4-MOD11.pdfwrwujrrjfaajerjrajrrarj
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
 
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
原件一样(UWO毕业证书)西安大略大学毕业证成绩单留信学历认证
 
What is Insertion Sort. Its basic information
What is Insertion Sort. Its basic informationWhat is Insertion Sort. Its basic information
What is Insertion Sort. Its basic information
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
 
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di  Ban...
obat aborsi Banjarmasin wa 082135199655 jual obat aborsi cytotec asli di Ban...
 
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
 
原件一样伦敦国王学院毕业证成绩单留信学历认证
原件一样伦敦国王学院毕业证成绩单留信学历认证原件一样伦敦国王学院毕业证成绩单留信学历认证
原件一样伦敦国王学院毕业证成绩单留信学历认证
 
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
如何办理(WashU毕业证书)圣路易斯华盛顿大学毕业证成绩单本科硕士学位证留信学历认证
 
Formulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfFormulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdf
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptx
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshare
 
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
如何办理(Dalhousie毕业证书)达尔豪斯大学毕业证成绩单留信学历认证
 

Scientific Data Stewardship Maturity Matrix

  • 1. Stewardship  Maturity  Matrix  for  Digital  Environmental  Data  Products       Maturity    Scale   Preservability   Accessibility   Usability   Produc?on   Sustainability   Data  Quality   Assurance   Data  Quality   Control/Monitoring   Data  Quality   Assessment   Transparency  / Traceability   Data  Integrity   Level  1  –     Ad  Hoc   Not  Managed   Any  storage  loca.on   Data  only   Not  publicly  available   Person-­‐to-­‐person   Extensive  product-­‐ specific  knowledge   required   No  documenta.on   online   Ad  Hoc  or  Not   applicable   No  obliga.on  or   deliverable   requirement   Data  quality  assurance   (DQA)  procedure   unknown  or  none   None  or     Sampling    unknown  or  spoEy   Analysis  unknown  or  random   in  .me      Algorithm/method/ model  theore.cal   basis  assessed   (method  and  results   online)     Limited  product  informa.on   available   Person-­‐to-­‐person   Unknown  or  no  data   ingest  integrity  check   Level  2  -­‐   Minimal   Managed   Limited   Non-­‐designated   repository       Redundancy   Limited  archiving   metadata     Publicly  available      Direct  file  download  (e.g.,   via  anonymous  FTP  server)   Collec.on/dataset  level   searchable     Non-­‐standard     data  format   Limited  documenta.on   (e.g.,  user’s  guide)   online   Short-­‐term    Individual  PI’s   commitment  (grant   obliga.ons)   Ad  Hoc  and  random   DQA  procedure  not   defined  and  documented       Sampling  and  analysis  are   regular     in  .me  and  space   Limited  product-­‐specific   metrics  defined  &   implemented   Level  1  +   Research  product   assessed  (method  and   results  online)   Product  informa.on  available  in   literature   Data  ingest  integrity   verifiable     (e.g.,  checksum   technology)   Level  3  -­‐   Intermediate   Managed   Defined,  Par?ally   Implemented   Designated  archive   Redundancy   Community-­‐standard   archiving  metadata     Conforming  to   limited  archiving   process  standards     Level  2  +   Non-­‐standard  data  service   Limited  data  server   performance   Granule/file  level   searchable   Limited  search  metrics   Community  Standard-­‐ based  interoperable   format  &  metadata     Documenta.on  (e.g.,   source  code,  product   algorithm  document,   processing  or/and  data   flow  diagram)  online   Medium-­‐term    Ins.tu.onal   commitment   (contractual   deliverables  with  specs   and  schedule  defined)     DQA  procedure  defined   and  documented  and   par.ally  implemented   Level  2  +     Sampling  and  analysis  are     frequent  and  systema.c  but   not  automa.c   Community  metrics  defined   and  par.ally  implemented   Procedure  documented    and   available  online    Level  2  +     Opera.onal  product   assessed  (method  and   results  online)   Algorithm/method/model   Theore.cal  Basis  Document   (ATBD)  &  source  code  online   Dataset  configura.on  managed   (CM)     Unique  Object  Iden.fier  (OID)   assigned  (dataset,   documenta.on,  source  code)   Data  cita.on  tracked     (e.g.,  u.lizing  Digital  Object   Iden.fier  (DOI)  system)   Level  2  +   Data  archive  integrity   verifiable     Level  4  -­‐   Advanced   Managed   Well-­‐Defined,   Fully   Implemented   Level  3  +   Conforming  to   community  archiving   standards   Level  3  +   Community-­‐standard  data   services   Enhanced  data  server   performance     Conforming  to  community   search  metrics   Dissemina.on  report   metrics  defined  and   implemented  internally   Level  3  +   Basic  capability  (e.g.,   subse_ng,  aggrega.ng)   &  data  characteriza.on   (overall/global,  e.g.,   climatology,  error   es.mates)  available   online   Long-­‐term   Ins.tu.onal   commitment   Product  improvement   process  in  place   DQA  procedure  well   documented,  fully   implemented  and   available  online  with   master  reference  data   Limited  data  quality   assurance  metadata     Level  3  +   Anomaly  detec.on  procedure   well-­‐documented  and  fully   implemented  using   community  metrics,   automa.c,  tracked  and   reported   Limited  quality  monitoring   metadata   Level  3  +     Quality  metadata   assessed  (method  and   results  online)   Limited  quality   assessment  metadata   Level  3  +   Opera.onal  Algorithm   Descrip.on  (OAD)  online,  OID   assigned,  and  under  CM     Level  3  +      Data  access  integrity   verifiable       Conforming  to   community  data  integrity   technology  standard     Level  5  -­‐   Op?mal   Level  4  +   Measured  ,   Controlled  ,   Audit   Level  4  +     Archiving  process   performance   controlled,   measured,  and   audited   Future  archiving   standard  changes   planned   Level    4  +     Dissemina.on  reports   available  online   Future  technology  and   standard  changes  planned   Level  4  +     Enhanced  online   capability  (e.g.,   visualiza.on,  mul.ple   data  formats)     Community  metrics  of   data  characteriza.on   (regional/cell)    online   External  ranking   Level  4  +   Na.onal  or   interna.onal   commitment   Changes  for   technology  planned     Level  4  +     DQA  procedure   monitored  and  reported   Conforming  to   community  quality   metadata  &  standards   External  review   Level  4  +     Cross-­‐valida.on  of  temporal   &  spa.al  characteris.cs   Physical  consistency  check   Conforming  to  community   quality  metadata  &  standards   Dynamic  providers/users   feedback  in  place   Level  4  +   Assessment  performed   on  a  recurring  basis   Conforming  to   community  quality   metadata  &  standards   External  ranking   Level  4  +   System  informa.on  online   Complete  data  provenance   available  online   Level  4  +      Data  authen.city   verifiable     (e.g.,  data  signature   technology)   Performance  of  data   integrity  check  monitored   and  reported   Document  ID:  NCDC-­‐CICS-­‐SMM_0001   Version:  12/09/2014  Rev.  1   Dataset  Name   Maturity  Level  as  of   mm/dd/yyyy   Dataset  Informa.on:  URL  Goes  Here       Dataset  POC:  Name  &  E-­‐mail  Here       SMM  POC:  Ge.Peng@noaa.gov   SMM  Assessment  POC:  Name  &  E-­‐mail  Here  
  • 2. To  cite  this  work       Peng,  G.,  J.L.  PriveEe,  E.J.  Kearns,  N.A.  Ritchey,  and  S.  Ansari,  2015:  A  unified  framework  for   measuring  stewardship  prac.ces  applied  to  digital  environmental  datasets.  Data  Science   Journal,  13.    hEp://dx.doi.org/10.2481/dsj.14-­‐049.   A  self-­‐assessment  template  using  the  latest  NCEI/CICS-­‐NC  Scien.fic  Data  Stewardship   Maturity  Matrix  (DSMM),  a  DSMM  user  quick  start-­‐up  guide  (NOAA  internal  version),  and   a  DSMM  graphics  generator  are  available  at:   hEp://dx.doi.org/10.6084/m9.figshare.1211954     hEp://.nyurl.com/DSMMguide   hEps://dx.doi.org/10.6084/m9.figshare.3458450     High-­‐level  background  on  the  scien.fic  data  stewardship  maturity  matrix  can  be  found  at:    hEp://www.slideshare.net/gepeng86/scien.fic-­‐data-­‐stewardship-­‐maturity-­‐matrix       The  scope  and  ra.onale  of  the  stewardship  maturity  assessment  model  and  its  nine  key   components  are  described  in  Peng  et  al.  (2015),  which  can  be  accessed  at  :   hEp://datascience.codata.org/ar.cles/abstract/10.2481/dsj.14-­‐049