Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
BIOLOGIA CELULAR
Células Vegetales
La célula es la porción más pequeña de sustancia viva de que están formados los
seres o...
Brown (1831). Con la presencia de una óptica más avanzada como el microscopio
descubrió la presencia del núcleo en todas l...
Características
La célula animal se diferencia de otras eucariotas, principalmente de las células
vegetales, en que carece...
necesarias o hacia el aparato de Golgi, desde donde se pueden exportar
al exterior.
9.-Reticulo Endoplasmaticos Liso: El R...
hacia la fase acuosa, los de la capa exterior de la membrana hacia el
líquido extracelular y los de la capa interior hacia...
Pared celular
Se distinguen una pared primaria y una secundaria, que se desarrollan en
forma propagada a las microfibrilla...
Célula procariota

Se llama procariota a las células sin núcleo celular definido, es decir, cuyo
material genético se encu...
Ribosomas
Operones

Adicionalmente también puede haber:
Flagelo(s)
Membrana externa (en bacterias Gram negativas)
Periplas...
Los organismos capaces de llevar a cabo este proceso se denominan fotótrofos
y si además son capaces de fijar el CO2 atmos...
Tipos
Según su morfología

De izquierda a derecha: Cocos, espirilos y bacilos.
Coco es un tipo morfológico de bacteria. Ti...
pared celular bacteriana, 3- espacio periplasmático, 4- membrana externa, 5- pared
celular arqueana.

Dependiendo del tipo...
o

o

característica, este tipo de organismo tiene una gran importancia
ecológica, ya que interviene en la degradación de ...
Upcoming SlideShare
Loading in …5
×

Biologia celular

1,366 views

Published on

Published in: Education
  • Be the first to comment

  • Be the first to like this

Biologia celular

  1. 1. BIOLOGIA CELULAR Células Vegetales La célula es la porción más pequeña de sustancia viva de que están formados los seres orgánicos. Todos los seres vivos, animales y vegetales, están formados por células. La forma de la célula es variada. Generalmente es esférica, pero también puede ser estrellada, ramificada, etc. El tamaño de las células es muy pequeño. Son invisibles a simple vista; es necesario el microscopio para distinguirlas. Para medir una célula se utiliza el micrón, que es igual a una milésima de milímetro. Estructura de la Célula. La célula es un organismo complicado. Está constituido por los siguientes elementos: membrana, citoplasma y núcleo. El citoplasma. Es una sustancia gelatinosa, densa, viscosa, parecida a la clara de huevo. El citoplasma está protegido y encerrado dentro de la membrana. El núcleo. Es un corpúsculo esférico de constitución parecida al citoplasma. El núcleo está rodeado por la membrana nuclear. En su interior se halla el jugo nuclear y la cromatina. Tiene, además, unos gránulos brillantes llamados nucléolos. La centro esfera. Es una pequeña esferita situada al lado del núcleo. Contiene un corpúsculo llamado centrosoma. Robert Hookke (1665). Observo por primera vez las células, en cortes finos de corcho, habiéndolas descrito como compartimientos simulares a un panal de abejas, de donde proviene su nombre (cella: espacio vació. Lo que en realidad observo Hooke fueron las paredes celulares sin nada de sus componentes citoplasmáticos, pues no se trataba de células vivas. Leeuwenhoeck (1674). Describió las primeras células aisladas y describió alguna organización interna de las células.
  2. 2. Brown (1831). Con la presencia de una óptica más avanzada como el microscopio descubrió la presencia del núcleo en todas las células, además de diferenciar por primera vez los dos compartimientos principales de la célula: el citoplasma, el núcleo o carioplasma. Matías Scheiden (1838). Publico los resultados de sus observaciones en células vegetales y concluyo que todas las plantas se originaban a partir de una sola célula. Teodoro Schwan (1839). Publico un trabajo sobre las bases celulares concluyendo que todas las células de las plantas eran estructuras análogas y se constituían en las unidas estructurales y funcionales de todos los organismos vivos. Schimper (1883). Uso por primera vez el nombre de plastido para distinguir a organoides citoplasmáticos especiales presentes en las células vegetales. Es tos se caracterizan por la presencia de pigmentos, como la clorofila y los carotenoides y por la presencia de pigmentos, como la clorofila y los carotenoides y por la capacidad de sintetizar y acumular sustancias de reserva. Virhow (1855). Expreso “Omniscelulae e cellula”. Toda célula se origina de otra célula, estableciendo los principios de que la división celular es el mecanismo central de la multiplicación de los organismos. Célula animal Una célula animal es un tipo de célula eucariota de la que se componen muchos tejidos en los animales.
  3. 3. Características La célula animal se diferencia de otras eucariotas, principalmente de las células vegetales, en que carece de pared celular y cloroplastos, y que posee vacuolas más pequeñas. Debido a la ausencia de una pared celular rígida, las células animales pueden adoptar una gran variedad de formas, e incluso una célula fagocitaria puede de hecho rodear y engullir otras estructuras. Partes de la célula animal Está dividida en: membrana celular, mitocondria, cromatina, lisosoma, aparato de golgi, citoplasma, nucleoplasma, núcleo celular, nucléolo, centriolos, ribosoma y membrana plasmática. 1.-Membrana Celular: Es el limite externo de la célula formada por fosfolipido y su función es delimitar la célula y controlar lo que sale e ingresa de la célula. 2.-Mitocondria: Diminuta estructura celular de doble membrana responsable de la conversión de nutrientes en el compuesto rico en energía trifosfato de adenosina (ATP), que actúa como combustible celular. Por esta función que desempeñan, llamada respiración celular, se dice que las mitocondrias son el motor de la célula. 3.-Cromatina: Complejo macromolecular formado por la asociación de ácido desoxirribonucleico o ADN y proteínas básicas, las histonas, que se encuentra en el núcleo de las células eucarióticas. 4.-Lisosoma: Saco delimitado por una membrana que se encuentra en las células con núcleo (eucarióticas) y contiene enzimas digestivas que degradan moléculas complejas. Los lisosomas abundan en las células encargadas de combatir las enfermedades, como los leucocitos, que destruyen invasores nocivos y restos celulares. 5.-Aparato de Golgi: Parte diferenciada del sistema de membranas en el interior celular, que se encuentra tanto en las células animales como en las vegetales y tiene la función de producir algunas sustancias y empaquetarlas en el interior de vesículas.Dichas sustancias pueden ser vertidas al exterior, o bien quedarse dentro de la célula. 6.-Citoplasma: El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante. 7.- ReticulosEndoplasmaticos (: También retículo endoplásmico, extensa red de tubos que fabrican y transportan materiales dentro de las células con núcleo (células eucarióticas). El RE está formado por túbulos ramificados limitados por membrana y sacos aplanados que se extienden por todo el citoplasma (contenido celular externo al núcleo) y se conectan con la doble membrana que envuelve al núcleo. Hay dos tipos de RE: liso y rugoso. 8.-Reticulo Endoplasmaticos Rugoso: La superficie externa del RE rugoso está cubierta de diminutas estructuras llamadas ribosomas, donde se produce la síntesis de proteínas. Transporta las proteínas producidas en los ribosomas hacia las regiones celulares en que sean
  4. 4. necesarias o hacia el aparato de Golgi, desde donde se pueden exportar al exterior. 9.-Reticulo Endoplasmaticos Liso: El RE liso desempeña varias funciones. Interviene en la síntesis de casi todos los lípidos que forman la membrana celular y las otras membranas que rodean las demás estructuras celulares, como las mitocondrias. Las células especializadas en el metabolismo de lípidos, como las hepáticas, suelen tener más RE liso. El RE liso también interviene en la absorción y liberación de calcio para mediar en algunos tipos de actividad celular. En las células del músculo esquelético, por ejemplo, la liberación de calcio por parte del RE activa la contracción muscular 10.-Nucleoplasma: El núcleo de las células eucarióticas es una estructura discreta que contiene los cromosomas, recipientes de la dotación genética de la célula. Está separado del resto de la célula por una membrana nuclear de doble capa y contiene un material llamado nucleoplasma. La membrana nuclear está perforada por poros que permiten el intercambio de material celular entre nucleoplasma y citoplasma. 11.-Núcleo: Es el órgano más conspicuo en casi todas las células animales y vegetales, está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. 12.-Nucleolo: Estructura situada dentro del núcleo celular que interviene en la formación de los ribosomas (orgánulos celulares encargados de la síntesis de proteínas). El núcleo celular contiene típicamente uno o varios nucleolos, que aparecen como zonas densas de fibras y gránulos de forma irregular. No están separados del resto del núcleo por estructuras de membrana. 13.-Centriolos: Cada una de las dos estructuras de forma cilíndrica que se encuentran en el centro de un orgánulo de las células eucarióticas denominado centrosoma. Al par de centriolos se conoce con el nombre de diplosoma; éstos se disponen perpendicularmente entre sí. 14.-la celula animal se parece a la vegetal en ciertos aspectos contenidos en el ácido ribonucleico (ARN) para enlazar secuencias específicas de aminoácidos y formar así proteínas. Los ribosomas se encuentran en todas las células y también dentro de dos estructuras celulares llamadas mitocondrias y cloroplastos. Casi todos flotan libremente en el citoplasma (el contenido celular situado fuera del núcleo), pero muchos están enlazados a redes de túbulos envueltos en membranas que ocupan toda la masa celular y constituyen el llamado retículo endoplasmático. 15.- Membrana Plasmática: La membrana plasmática de las células eucarióticas es una estructura dinámica formada por 2 capas de fosfolípidos en las que se embeben moléculas de colesterol y proteínas. Los fosfolípidos tienen una cabeza hidrófila y dos colas hidrófobas. Las dos capas de fosfolípidos se sitúan con las cabezas hacia fuera y las colas, enfrentadas, hacia dentro. Es decir, los grupos idrófilos se dirigen
  5. 5. hacia la fase acuosa, los de la capa exterior de la membrana hacia el líquido extracelular y los de la capa interior hacia el citoplasma. CÉLULA VEGETAL La célula vegetal adulta se distingue de otras células eucariotas, como las células típicas de los animales o las de los hongos, por lo que es descrita a menudo con los rasgos de una célula del parénquima asimilador de una planta vascular. Pero sus características no pueden generalizarse al resto de las células de una planta, meristemáticas o adultas, y menos aún a las de los muy diversos organismos imprecisamente llamados vegetales. Las células adultas de las plantas terrestres presentan rasgos comunes, convergentes con las de otros organismos sésiles, fijos al sustrato, o pasivos, propios del plancton, de alimentación osmótrofa, por absorción, como es el caso de los hongos, pseudohongos y de muchas algas. Esos rasgos comunes se han desarrollado independientemente a partir de protistas unicelulares fagótrofos desnudos (sin pared celular). Todos los eucariontes osmótrofos tienden a basar su solidez, sobre todo cuando alcanzan la pluricelularidad, en la turgencia, que logran gracias al desarrollo de paredes celulares resistentes a la tensión, en combinación con la presión osmótica del protoplasma, la célula viva. Así, las paredes celulares son comunes a los hongos y protistas de modo de vida equivalente, que se alimentan por absorción osmótica de sustancias orgánicas, y a las plantas y algas, que toman disueltas de las medias sales minerales y realizan la fotosíntesis. Y también cabe agregar que no tienen centriolos en su interior, ya que estos solo se presentan en las células animales.
  6. 6. Pared celular Se distinguen una pared primaria y una secundaria, que se desarrollan en forma propagada a las microfibrillas de celulosa dispuestas de manera ordenada, con una estructura más densa que la pared primaria. No permite el crecimiento de la célula; solamente aumenta su espesor por aposición, es decir, por depósito de microfibrillas de celulosa. Generalmente presenta tres capas, aunque pueden ser más. Cuando existe pared celular secundaria, el contenido celular desaparece, quedando en su lugar un hueco denominado lúmen celular. Por eso, todas las células con pared secundaria son células muertas. Cloroplastos Los cloroplastos están compuesto por el hialoplasma o citosol, disolución acuosa de moléculas orgánicas e iones, y los orgánulos citoplasmáticos, como los plastos, mitocondrias, ribosomas, aparato de Golgi. Las membranas del retículo endoplásmico son relativamente escasas y están enmascaradas por los numerosos ribosomas que llenan el citosol. El gran desarrollo del retículo endoplásmico durante la diferenciación celular se relaciona con la intensa hidratación que experimenta el cloroplasto. Este proceso da lugar a enormes vacuolas que se llenan de líquido que se suelen unir entre sí. Como ared celular Plasmodesmo Vacuola Plastos Cloroplastos Leucoplastos Cromoplastos Aparato de Golgi Ribosomas Retículo endoplasmático Mitocondrias Membrana célular ( la célula vegetal) Citoplasma Núcleo ADN (ácido desoxirribonucleico) Cromatina ( la célula vegetal) ARN (ácido ribonucleico)
  7. 7. Célula procariota Se llama procariota a las células sin núcleo celular definido, es decir, cuyo material genético se encuentra disperso en el citoplasma, reunido en una zona denominada nucleoide.1 Por el contrario, las células que sí tienen un núcleo diferenciado del citoplasma, se llaman eucariotas, es decir aquellas cuyo ADN se encuentra dentro de un compartimiento separado del resto de la célula. Además, el término procariota hace referencia a los organismos pertenecientes al imperio Prokaryota, cuyo concepto coincide con el reino Monera de las clasificaciones de Herbert Copeland o Robert Whittaker que, aunque anteriores, continúan siendo aún populares. Casi sin excepción los organismos basados en células procariotas son unicelulares (organismos consistentes en una sola célula). Se cree que todos los organismos que existen actualmente derivan de una forma unicelular procariota (LUCA). Existe una teoría, la endosimbiosis seriada, que considera que a lo largo de un lento proceso evolutivo, hace unos 1500 millones de años, los procariontes derivaron en seres más complejos por asociación simbiótica: los eucariontes. Estructura celular La estructura celular procariota básica tiene los siguientes componentes:2 Membrana plasmática Pared celular (excepto en micoplasmas y termoplasmatos) Citoplasma Nucleoide
  8. 8. Ribosomas Operones Adicionalmente también puede haber: Flagelo(s) Membrana externa (en bacterias Gram negativas) Periplasma Cápsula Inclusiones citoplasmáticas (nutrientes y vesículas de gas) Pili o fimbrias Glicocálix Biopelícula Capa S Endosporas Plásmidos Mesosomas Diversidad bioquímica y metabólica Desde su aparición, han sufrido gran diversificación. El metabolismo de las procariotas es enormemente variado (a diferencia de las eucariotas), y causa que algunas procariotas sean muy diferentes a otras. Algunas son muy resistentes a condiciones ambientales extremas como temperatura o acidez, se las llama Extremófilos. La totalidad de la diversidad de los sistemas metabólicos, es abarcada por los procariontes, por lo que la diversidad metabólica de los eucariontes se considera como un subconjunto de las primeras. Nutrición La nutrición puede ser autótrofa (quimiosíntesis o fotosíntesis) o heterótrofa (saprófita, parásita o simbiótica). En cuanto al metabolismo los organismos pueden ser: anaerobios estrictos o facultativos, o aerobio. La quimiosíntesis es la conversión biológica de moléculas de un carbono y nutrientes en materia orgánica usando la oxidación de moléculas inorgánicas como fuente de energía, sin la luz solar, a diferencia de la fotosíntesis. Una gran parte de los organismos vivientes basa su existencia en la producción quimiosintética en fallas termales, cepas frías u otros hábitats extremos a los cuales la luz solar es incapaz de llegar. La fotosíntesis es la base de la vida actual en la Tierra. Consiste en una serie de procesos mediante los cuales las plantas, algas y algunas bacterias captan y utilizan la energía de la luz para transformar la materia inorgánica de su medio externo en materia orgánica que utilizan para su crecimiento y desarrollo.
  9. 9. Los organismos capaces de llevar a cabo este proceso se denominan fotótrofos y si además son capaces de fijar el CO2 atmosférico (lo que ocurre casi siempre) se llaman autótrofos. Salvo en algunas bacterias, en el proceso de fotosíntesis se producen liberación de oxígeno molecular (proveniente de moléculas de agua) hacia la atmósfera (fotosíntesis oxigénica). Es ampliamente admitido que el contenido actual de oxígeno en la atmósfera se ha generado a partir de la aparición y actividad de dichos organismos fotosintéticos. Esto ha permitido la aparición evolutiva y el desarrollo de organismos aerobios capaces de mantener una alta tasa metabólica (el metabolismo aerobio es muy eficaz desde el punto de vista energético). La otra modalidad de fotosíntesis, la fotosíntesis anoxigénica, en la cual no se libera oxígeno, es llevada a cabo por un número reducido de bacterias, como las bacterias púrpuras del azufre y las bacterias verdes del azufre; estas bacterias usan como donador de hidrógenos el H2S, con lo que liberan azufre. Nutrición saprofita: es a base de restos de animales o vegetales en descomposición. Nutrición parásita: obtienen el alimento de un hospedador al que perjudican pero no llegan a matar. Nutrición simbiótica: los seres que realizan la simbiosis obtienen la materia orgánica de otro ser vivo, el cual también sale beneficiado. Reproducción Se da de dos maneras: reproducción asexual o conjugación Reproducción asexual por bipartición o fisión binaria: es la forma más sencilla y rápida en organismos unicelulares, cada célula se parte en dos, previa división del material genético y posterior división de citoplasma (citocinesis). Reproducción parasexual, para obtener variabilidad y adaptarse a diferentes ambientes, entre las bacterias puedes ocurrir intercambio de ADN como la conjugación, la transdución y la transformación. o Conjugación: Proceso que ocurre cuando una bacteria hace contacto con otra usando un hilo llamado PILI. En el momento en el que los citoplasmas están conectados, el individuo donante (considerado como masculino) transfiere parte de su ADN a otro receptor (considerado como femenino) que lo incorpora (a través del PILI) a su dotación genética mediante recombinación y lo transmite a su vez al reproducirse. o Transducción: En este proceso, un agente transmisor, que generalmente es un virus, lleva fragmentos de ADN de una bacteria parasitada a otra nueva receptora, de tal forma que el ADN de la Bacteria parasitada se integra al ADN de la nueva bacteria. o Transformación: Una bacteria puede introducir en su interior fragmentos de ADN que están libres en el medio. Estos pueden provenir del rompimiento o degradación de otras bacterias a su alrededor.
  10. 10. Tipos Según su morfología De izquierda a derecha: Cocos, espirilos y bacilos. Coco es un tipo morfológico de bacteria. Tiene forma más o menos esférica (ninguna de sus dimensiones predomina claramente sobre las otras). Los bacilos son bacterias que tienen forma de bastón, cuando se observan al microscopio. Los bacilos se suelen dividir en: o Bacilos Gram positivos: fijan el violeta de genciana (tinción de Gram) en la pared celular porque carecen de capa de lipopolisacáridos. o Bacilos Gram negativos: no fijan el violeta de genciana porque poseen la capa de lipopolisacárido. Vibrio es un género de bacterias, incluidas en el grupo gamma de las proteobacterias. Varias de las especies de Vibrio son patógenas, provocando enfermedades del tracto digestivo, en especial Vibrio cholerae, el agente que provoca el cólera, y Vibrio vulnificus, que se transmite a través de la ingesta de marisco. Los espirilos son bacterias flageladas de forma helicoidal o de espiral. Se desplazan en medios viscosos avanzando en tornillo. Su diámetro es muy pequeño, lo que hace que puedan atravesar las mucosas; por ejemplo Treponema pallidum que produce la sífilis en el hombre. Son más sensibles a las condiciones ambientales que otras bacterias, por ello cuando son patógenas se transmiten por contacto directo (vía sexual) o mediante vectores, normalmente artrópodos hematófagos Según la envoltura celular Tipos de procariontes según su envoltura celular. A: bacteria Gram negativa, B: bacteria Gram positiva, C: arquea, D: micoplasma. 1- membrana citoplasmática, 2-
  11. 11. pared celular bacteriana, 3- espacio periplasmático, 4- membrana externa, 5- pared celular arqueana. Dependiendo del tipo de pared celular y el número de membranas, pueden haber los siguientes tipos de células procariotas:3 A) Gracilicutes (=piel delgada), propio de las bacterias gram negativas, las cuales son didérmicas, es decir, de doble membrana y entre estas membranas una delgada pared de peptidoglicano B) Firmicutes (=piel fuerte), propio de las bacterias gram positivas, con una membrana citoplasmática y una gruesa pared de peptidoglicano C) Mendosicutes (=piel rara), propio de las arqueas, con una pared celular mayormente de glicopéptidos diferentes del de las bacterias. La membrana plasmática es igualmente diferente, ya que los lípidos se únen a los gliceroles con enlaces éter, en lugar de enlaces éster como en las bacterias D) Tenericutes (=piel delicada), propio de los micoplasmas, bacterias endoparásitas que carecen de pared celular, al parecer como una adaptación evolutiva al hábitat intracelular Clasificación Según el Sistema de tres dominios los grupos procariotas principales son Archaea y Bacteria. La diferencia más importante que sustentó en un inicio la diferencia entre estos dos grupos está en la secuencia de bases nitrogenadas de las fracciones del ARN ribosomal 16S. Arqueas son microorganismos unicelulares muy primitivos. Al igual que las bacterias, las archaea carecen de núcleo y son por tanto procariontes. Sin embargo, las diferencias a nivel molecular entre archaeas y bacterias son tan fundamentales que se las clasifica en grupos distintos. De hecho, estas diferencias son mayores de las que hay, por ejemplo, entre una planta y un animal. Actualmente se considera que las archaea están filogenéticamente más próximas a los eucariontes que a las bacterias. Las archaea fueron descubiertas originariamente en ambientes extremos, pero desde entonces se las ha hallado en todo tipo de hábitats. o Metanógenos son microorganismos procariontes que viven en medios estrictamente anaerobios y que obtienen energía mediante la producción de gas natural, el metano (CH4). Gracias a esta
  12. 12. o o característica, este tipo de organismo tiene una gran importancia ecológica, ya que interviene en la degradación de la materia orgánica en la naturaleza, y en el ciclo del carbono. Además, son un grupo filogenéticamente heterogéneo en dónde el factor común que las une es la producción de gas metano y sus cofactores únicos. Las podemos encontrar en nuestro intestino. Halófilas: Viven en ambientes extremadamente salinos. Halococcus y Halobacterium solo viven en medios con más del 12% de sal (mucho más salado que el agua de mar). Las hipertermófilas viven y desarrollan en condiciones de temperaturas extremas y pH extremos en sitios con actividad volcánica (como géiseres) en las dorsales oceánicas, donde la mayoría de seres vivos serían incapaces de sobrevivir. Existe la teoría de que fueran posiblemente las primeras células simples. Bacterias son organismos microscópicos formados por células procariotas más evolucionadas. Las cianobacterias, también conocidas como algas verdeazules, son eubacterias fotosintéticas y coloniales que han estado viviendo sobre nuestro planeta por más de 3 mil millones de años. Esta bacteria crece en esteras y montículos en las partes menos profundas del océano. Hoy en día sólo las hay en algunas regiones, pero hace miles de millones de años las había en tan gran número, que eran capaces de añadir, a través de la fotosíntesis, suficiente oxígeno a la primitiva atmósfera de la Tierra, como para que los animales que necesitaban oxígeno pudieran sobrevivir

×