Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Curation Technologies for Multilingual Europe

166 views

Published on

Georg Rehm. Curation Technologies for Multilingual Europe. META-FORUM 2016, Lisbon, Portugal, July 2016. July 04/05, 2016.

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Curation Technologies for Multilingual Europe

  1. 1. Curation Technologies 
 for Multilingual Europe Georg Rehm DFKI, Germany META-FORUM 2016 –  Lisbon, Portugal – 04/05 July 2016
  2. 2. Information Information Information Information Information Information Information Information Information ? ?? ?Information OutputInput SoftwareProcesses Curation Technologies for Multilingual Europe •  Author •  Scholar •  TV editor •  Researcher •  Knowledge worker •  Investigative journalist •  Designer of an exhibition •  Curator of digital information
  3. 3. Sectors Input Processes Software Output tweet analyse text processor newspaper article newspaper article select presentation multimedia website wire copy focus spreadsheet tv report facebook status update revise email exhibition catalogue search result read up on browser mobile application email write groupware mashup (e.g., map) text message create sector-specific application text piece concept research CMS concept text file assess ECMS timeline video evaluate CRM study map arrange enterprise software presentation stockphoto sort graphics/layouting software fact collection in-house database structure IP telephony description of an exhibit calendar entry summarise etc. analysis spreadsheet shorten etc. archive translate etc. catch up on combine abstract integrate visualise generate annotate reference etc. Information Information Information Information Information Information Information Information Information ? ?? ?Information OutputInput SoftwareProcesses
  4. 4. Sectors Input Processes Software Output tweet analyse text processor newspaper article newspaper article select presentation multimedia website wire copy focus spreadsheet tv report facebook status update revise email exhibition catalogue search result read up on browser mobile application email write groupware mashup (e.g., map) text message create sector-specific application text piece concept research CMS concept text file assess ECMS timeline video evaluate CRM study map arrange enterprise software presentation stockphoto sort graphics/layouting software fact collection in-house database structure IP telephony description of an exhibit calendar entry summarise etc. analysis spreadsheet shorten etc. archive translate etc. catch up on combine abstract integrate visualise generate annotate reference etc. Information Information Information Information Information Information Information Information Information ? ?? ?Information OutputInput SoftwareProcesses
  5. 5. Sectors Input Processes Software Output tweet analyse text processor newspaper article newspaper article select presentation multimedia website wire copy focus spreadsheet tv report facebook status update revise email exhibition catalogue search result read up on browser mobile application email write groupware mashup (e.g., map) text message create sector-specific application text piece concept research CMS concept text file assess ECMS timeline video evaluate CRM study map arrange enterprise software presentation stockphoto sort graphics/layouting software fact collection in-house database structure IP telephony description of an exhibit calendar entry summarise etc. analysis spreadsheet shorten etc. archive translate etc. catch up on combine abstract integrate visualise generate annotate reference etc. Information Information Information Information Information Information Information Information Information ? ?? ?Information OutputInput SoftwareProcesses
  6. 6. language and knowledge technologies curation technologies sector-specific technologies platformtechnologies sector-specific solutions ! Digital Curation Technologies •  Make curation processes in four SMEs (and sectors) more efficient through language and knowledge technologies. •  Technology transfer project to arrive at proofs of concept. •  Curation services for real companies and real use cases. •  The human expert/curator is always in the centre and loop. •  Platform for digital curation technologies: innovation boost. Curation Technologies for Multilingual Europe
  7. 7. Curation Technologies for Multilingual Europe CurationDashboard Structure visualisation Multilingual multimedia sources Crossmedia recommendations Multilingual summarisation Event timelining Semantification of content Multilingual sentiment analysis Semantic storytelling Ontology-based knowledge structures Automatic hyperlinking of document collections Curation Processes Processing, exploration and 
 re-aggregation of domain- and task- specific document collections.
  8. 8. Key Characteristics •  Technology transfer and integration project •  Broad set of tools and technologies •  Focus on building proofs of concept •  Our technologies don’t have to be perfect •  Human expert, i.e., the curator, always in the loop •  Important for all SME partners: domain-adaptability. •  WPs: Semantic Analysis, Semantic Generation, Multilingual Technologies, Integration into Curation Tech Curation Technologies for Multilingual Europe
  9. 9. platform for digital curation technologies broker REST API curation service 1 language or knowledge technology curation service 2 language or knowledge technology client using 
 the API external service 1 external service 2 client using 
 the API client using 
 the API client using 
 the API pipelined curation workflow Curation Technologies for Multilingual Europe •  Curation process: e-service available through REST API. •  Services can be combined to form pipelines or workflows. •  Domain-adaptability: every curation process has a training API to create and use domain-specific models.
  10. 10. Current Results •  Implemented the following baseline services: –  NER – e-entityrecognition e-service –  Geolocation – e-entityrecognition and visualisation –  Temporal Analyser – e-entityrecognition and visualisation –  Classification – e-classification e-service –  Clustering – e-clustering e-service –  Machine Translation – e-translation e-service •  Curation Dashboard (first prototype) •  Semantic Storytelling (work in progress) Curation Technologies for Multilingual Europe
  11. 11. NER, Entity Linking, Geolocation Curation Technologies for Multilingual Europe ... In the Viking colony of Iceland, an extraordinary vernacular literature blossomed in the 12th through 14th centuries ... ...
 The ships were scuttled there in the 11th century, to block a
 navigation channel and thus 
 protect Roskilde, then 
 Copenhagen from seaborne assault
 ... ...
 Viking Age inscriptions have 
 also been discovered on the 
 Manx runestones on the 
 Isle of Man.
 … Plain Text NIF enrichment visualisation http://api.digitale-kuratierung.de/api/e-nlp/namedEntityRecognition?analysis=ner http://http://dev.digitale-kuratierung.de/admini/pages/geolocalization.php •  Currently based on OpenNLP (with NIF integration) •  Mode 1: model-based (for domains where annotated data is available) •  Mode 2: dictionary-based (for domains where only a list of names is available) •  Entity Linking through SPARQL queries to DBPedia •  For locations, GPS-coordinates are retrieved, document level average and standard deviation (over all locations) are calculated to visualise positioning of documents on a map.
  12. 12. Curation Technologies for Multilingual Europe NER Training http://api.digitale-kuratierung.de/api/e-nlp/trainModel?analysis=dict 
 (in the suboptimal case that only a list of terms and their URIs in an ontology is available)
 http://api.digitale-kuratierung.de/api/e-nlp/trainModel?analysis=ner
 (if annotated training data is available)
 directly usable on new input NER model
  13. 13. Curation Technologies for Multilingual Europe Temporal Analysis ...
 The ships were scuttled there in the 11th century, to block a
 navigation channel and thus 
 protect Roskilde, then 
 Copenhagen from seaborne assault
 ... ...
 Viking Age inscriptions have 
 also been discovered on the 
 Manx runestones on the 
 Isle of Man.
 ... ... In the Viking colony of Iceland, an extraordinary vernacular literature blossomed in the 12th through 14th centuries … 900 1600 http://api.digitale-kuratierung.de/api/e-nlp/namedEntityRecognition?analysis=temp http://dev.digitale-kuratierung.de/admini/pages/timelining.php Plain Text NIF enrichment visualisation •  Sort and rank documents from a collection on chronological scale. •  Developed rule-based system due to our focus in terms of languages (EN, DE), domain adaptability, normalisation requirements. •  Analysis of temporal expressions in a document (or, later, paragraphs or even sentences). •  Compute mean value for date and time, allowing positioning on a timeline. •  Future plans: adaptability through user-specific rules. •  Related work: SUTime, HeidelTime, Tango, Tarsgi; many papers at LREC 2016
  14. 14. Classification •  Mallet – Maximum Entropy Algorithm •  Algorithm for text classification, easy integration. •  Goal: text classification, i.e., assign a topic (class) to a document (or parts of a document) to apply domain- or topic- specific NLP processing techniques. •  Future plans: improvement of classification schema by means of new training data and additional algorithms. Curation Technologies for Multilingual Europe @prefix rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . @prefix xsd:   <http://www.w3.org/2001/XMLSchema#> . @prefix nif:    <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#> . @prefix rdfs:  <http://www.w3.org/2000/01/rdf-schema#> . 
 <http://dkt.dfki.de/documents/#char=0,1257> a nif:RFC5147String , nif:String , nif:Context ; nif:beginIndex "0"^^xsd:nonNegativeInteger ; nif:endIndex "1257"^^xsd:nonNegativeInteger ;        nif:documentClassificationLabel "Frühjahrsoffensive_1918"^^xsd:string ; nif:isString "Ceylon-Teestube B. Walther München Maximilian-Strasse 44 Gegenüber dem Königl. Hoftheater Telephon 428 München, den 26.XI.13. Von hier nach Dresden ab München 8.25 9.00 10.20 an Dresden 7.28 10.47 9.48 Sie müssen unbedingt Donnerstag hier bleiben. So können Sie doch nicht vorbeifahren. Donnerstag Abend eine interessante Uraufführung in den Kammerspielen "unseligen Gedenkens " Ich werde Billets dafür besorgen. […]"^^xsd:string .
  15. 15. Clustering •  WEKA (Expectation Maximisation algorithm) •  Easy integration, availability, additional algorithms. •  Goal: identification of distinct features of document collections. •  Example use case: a user has to prepare a museum exhibit on “Birds”. Knowing which documents can be grouped can be useful to split the documents into exhibition rooms. •  Future plans: allow users to easily recognize groups of documents in new domains and collections; faceted search. Curation Technologies for Multilingual Europe ARFF Input JSON Output @RELATION iris @ATTRIBUTE sepallength  NUMERIC @ATTRIBUTE sepalwidth   NUMERIC @ATTRIBUTE petallength  NUMERIC @ATTRIBUTE petalwidth   NUMERIC 
 @DATA 5.1,3.5,1.4,0.2 4.9,3.0,1.4,0.2 4.7,3.2,1.3,0.2 4.6,3.1,1.5,0.2 5.0,3.6,1.4,0.2 5.4,3.9,1.7,0.4 4.6,3.4,1.4,0.3 5.0,3.4,1.5,0.2 4.4,2.9,1.4,0.2 4.9,3.1,1.5,0.1 { "results": { "numberClusters": -1, "clusters": {"cluster1": {   "clusterId": 1, "entitites": {    "entity1": {     "meanValue": 3.3099999999999996,     "label": "sepalwidth"   },   "entity2": {     "meanValue": 1.45,     "label": "petallength"    },   "entity3": {     "meanValue": 0.22000000000000003,     "label": "petalwidth"    } } }}}}
  16. 16. Machine Translation Curation Technologies for Multilingual Europe Workflow Language & Translation Models trained on DGT, News, Europarl, TED Herr Modi befindet sich auf einer fünftägigen Reise nach Japan, um die wirtschaftlichen Beziehungen mit der drittgrößten Wirtschaftsnation der Welt zu festigen. Mr Modi is located on a five-day trip to Japan to strengthen the economic ties with the third largest economy in the world. Named Entity Recognition Entity Linking Temporal Expressions Metadata Processing Post-Edit Retraining Example •  Robust, adaptable and customised models of MT as e-services (Moses-based SMT) •  Scenarios: museums, showrooms; news, media; publishers; cultural institutions, archives •  Integration in curation workflows with other DKT services (NER, Temporal Analyser) •  Plug-in multiple knowledge sources (Linked Data)
  17. 17. Semantic Storytelling •  Important objective for all partner use cases: Automatic hyper-linking of task-specific, self-contained collections. •  Input: coherent, self-contained document collection •  Output: processed collection with added analysis information, easily accessible as a hypertext, for efficient browsing •  Semantic Storytelling – operates on the hypertext graph that we construct on top of the original collection •  Enables multiple different paths through the collection •  Semantic storytelling is the identification, ranking and recommendation of meaningful hypertext paths. Curation Technologies for Multilingual Europe
  18. 18. Curation Technologies for Multilingual Europe <http://d-nb.info/gnd/11858071X, met, http://d-nb.info/gnd/129094722> http://dev.digitale-kuratierung.de/2ds3/index.php <http://d-nb.info/gnd/118589768, wrote, http://d-nb.info/gnd/118623230> <http://d-nb.info/gnd/123242231, visited, http://d-nb.info/gnd/188402519> <http://d-nb.info/gnd/118569015, said, http://d-nb.info/gnd/11947509X> <http://d-nb.info/gnd/119173425, was, http://d-nb.info/gnd/118629867> <http://d-nb.info/gnd/119178893, designed, http://d-<nb.info/gnd/118629867> <http://d-nb.info/gnd/118876759, love, http://d-nb.info/gnd/118629867> <http://d-nb.info/gnd/118545892, depart, http://d-nb.info/gnd/107363569> <http://d-nb.info/gnd/128830751, write, http://d-nb.info/gnd/118606026> <http://d-nb.info/gnd/11858071X, protect, http://d-nb.info/gnd/39650438> <http://d-nb.info/gnd/116713704, married, http://d-nb.info/gnd/52754181> … 1 2 3 45
  19. 19. Curation Technologies for Multilingual Europe Curation Dashboard
  20. 20. Conclusions •  Curation technologies are smart technologies to support knowledge workers handling content and knowledge. •  The multilingual Digital Single Market will create a massive need for multilingual Curation Technologies due to an ever-increasing need for multilingual content. •  DKT is mostly centred around German and English. •  We cater for a small set of curation processes. •  To be extended in a larger follow-up project. •  Extended set of curation processes, more complex approaches, many more languages. Curation Technologies for Multilingual Europe
  21. 21. Thank you! supported by

×