MOISES VILLENA                                      Cap. 3 Funciones de Varias Variables      3        3.1. FUNCIÓN VECTOR...
MOISES VILLENA                                             Cap. 3 Funciones de Varias Variables     3.1 FUNCIÓN VECTORIAL ...
MOISES VILLENA                                             Cap. 3 Funciones de Varias Variables                 Ejemplo.  ...
MOISES VILLENA                                          Cap. 3 Funciones de Varias Variables   Elaborar gráficas de una fu...
MOISES VILLENA                                                     Cap. 3 Funciones de Varias Variables                 Ej...
MOISES VILLENA                                                  Cap. 3 Funciones de Varias Variables                      ...
MOISES VILLENA                                          Cap. 3 Funciones de Varias Variablesque f ( x, y ) = k . Es decir,...
MOISES VILLENA                                               Cap. 3 Funciones de Varias Variables                 Ejemplo ...
MOISES VILLENA                                     Cap. 3 Funciones de Varias Variables3.5 LIMITES DE FUNCIONES DE VARIAS ...
MOISES VILLENA                              Cap. 3 Funciones de Varias Variables       3.5.3 CONJUNTO ABIERTO          U ⊆...
MOISES VILLENA                                                   Cap. 3 Funciones de Varias VariablesSi n = 2 tenemos:⎛ lí...
MOISES VILLENA                                                               Cap. 3 Funciones de Varias Variables         ...
MOISES VILLENA                                                                            Cap. 3 Funciones de Varias Varia...
MOISES VILLENA                                                                              Cap. 3 Funciones de Varias Var...
MOISES VILLENA                                                                    Cap. 3 Funciones de Varias Variables    ...
MOISES VILLENA                                                               Cap. 3 Funciones de Varias Variables         ...
MOISES VILLENA                                             Cap. 3 Funciones de Varias Variables       3.6.1 CONTINUIDAD EN...
MOISES VILLENA                               Cap. 3 Funciones de Varias Variables3.7. DERIVADA DE UNA FUNCIÓN ESCALAR.    ...
MOISES VILLENA                                                               Cap. 3 Funciones de Varias Variables         ...
MOISES VILLENA                                                                     Cap. 3 Funciones de Varias Variables   ...
MOISES VILLENA                                        Cap. 3 Funciones de Varias Variables  Más adelante daremos una técni...
MOISES VILLENA                                                  Cap. 3 Funciones de Varias Variables      f : U ⊆ R 2 → R ...
MOISES VILLENA                                               Cap. 3 Funciones de Varias Variables                         ...
MOISES VILLENA                                            Cap. 3 Funciones de Varias Variables                 Ejercicios ...
MOISES VILLENA                                                     Cap. 3 Funciones de Varias Variables    3.7.2.1      IN...
MOISES VILLENA                                                Cap. 3 Funciones de Varias Variables                 Ejemplo...
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
3 funciones de varias variables
Upcoming SlideShare
Loading in …5
×

3 funciones de varias variables

1,178 views

Published on

  • Be the first to comment

3 funciones de varias variables

  1. 1. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3 3.1. FUNCIÓN VECTORIAL 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.1. 3.3. DOMINIO DE UNA FUNCIÓN 3.2. ESCALAR 3.3. 3.4. CONJUNTO DE NIVEL 3.4. 3.5. LIMITES DE FUNCIONES DE VARIAS VARIABLES 3.6. CONTINUIDAD 3.7. DERIVADA DE UNA FUNCIÓN ESCALAR 3.8. DIFERENCIABILIDAD 3.9. GRADIENTE 3.10. LA DIFERENCIAL 3.11. REGLA DE LA CADENA 3.12. DERIVACIÓN IMPLICITA OBJETIVOS: • Conceptualizar funciones Vectoriales, Escalares y Curvas • Describir conjuntos de niveles. • Establecer límites, continuidad y derivadas de funciones de dos variables. • Determinar si una función de dos variables es derivable o no. • Determinar si una función de dos variables es diferenciable o no. • Obtener derivadas de funciones compuestas. • Obtener derivadas de funciones implícitas. 69
  2. 2. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3.1 FUNCIÓN VECTORIAL 3.1.1 DEFINICIÓN Una función del tipo f : U ⊆ R n → R m se la denomina FUNCIÓN VECTORIAL o CAMPO VECTORIAL. Ejemplo. Sea f : R 2 → R3 tal que f ( x, y ) = ( 2 x − y, x + y,3x + 5 y ) Esquemáticamente tenemos: f R2 R3 (1,1) (1,2,8) (− 2,0) (− 4,−2 − 6) Si m = 1, tenemos f : U ⊆ R n → R , se la denomina FUNCIÓN ESCALAR,CAMPO ESCALAR, O FUNCIÓN DE VARIAS VARIABLES. Si f : U ⊆ R 2 → R , tenemos una FUNCIÓN DE DOS VARIABLES. Ejemplo. Sea f : R 2 → R tal que f ( x, y) = 6 − 2 x − 3 y Si f : U ⊆ R 3 → R , tenemos una FUNCIÓN DE TRES VARIABLES. Ejemplo. Sea f : R 3 → R tal que f ( x, y, z ) = x 2 + y 2 + z 2 Si n = 1, tenemos f :U ⊆ R → Rm , la cual se la denominaTRAYECTORIA o CURVA.70
  3. 3. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo. Sea f : R → R 3 tal que f (t ) = (2 − 3t , 4 + t , − 1 + 2t ) Tenemos una CURVA de R3 . Este capítulo lo dedicaremos al estudio de FUNCIONES ESCALARES. 3.2. GRAFICA DE UNA FUNCIÓN ESCALAR 3.2.1 DEFINICIÓN Sea f : U ⊆ R n → R . Se llama gráfica de f al conjunto de puntos (x1 , x2 , , xn , f (x )) de R n+1 , donde x = ( x1 , x2 , , xn ) ∈U . Si tenemos z = f ( x, y ) una función de dos variables. Su gráfica se ( )define como el conjunto de puntos x, y , z de R , tales que z = f ( x, y ) . El 3lugar geométrico es llamado Superficie, como ya se lo ha anticipado. Algunas superficies que corresponde a funciones, ya se han graficado en elcapítulo anterior. Ejemplo. Para f : R 2 → R tal que f ( x, y) = 6 − 2 x − 3 y , su grafico es el conjunto ( x, y , z ) de R 3 tales que z = 6 − 2 x − 3 y (un plano) z 6 z = 6 − 2x − 3y 2 y 3 x 71
  4. 4. MOISES VILLENA Cap. 3 Funciones de Varias Variables Elaborar gráficas de una función de dos variables no es tan sencillo, serequeriría de un computador en la mayoría de las ocasiones. Pero si podemossaber características de sus graficas analizando su regla de correspondencia. 3.3 DOMINIO DE UNA FUNCIÓN ESCALAR Sea f : U ⊆ R n → R , entonces su DOMINIO es el conjunto U Es decir, su DOMINIO está constituido por vectores de Rn ,x = ( x1 , x2 , , xn ) para los cuales tiene sentido la regla de correspondencia. Aquí a x1, x 2 , , x n se las denominan VARIABLES INDEPENDIENTES. Si f : U ⊆ R 2 → R , su dominio será un subconjunto del plano. Establecer el Dominio Natural, igual que para funciones de una variable, esuna necesidad en muchas ocasiones. Ejemplo 1 Hallar el Dominio Natural para f ( x, y ) = x 2 + y 2 SOLUCIÓN. Observe que la regla de correspondencia no tiene restricciones, por tanto se le puede dar cualquier valor real a las variables independientes “ x ” y “ y ”, es decir Domf = R 2 . Además, se puede decir que el Dominio de una función de dos variables será la PROYECCIÓN QUE TENGA SU GRÁFICA EN EL PLANO xy . Recuerde que la gráfica de z = x + y es un paraboloide. 2 2 z y x Por tanto la proyección es todo el plano xy72
  5. 5. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 2 Hallar el Dominio Natural para f ( x, y ) = 9 − x 2 − y 2 SOLUCIÓN. Observe que la regla de correspondencia tiene sentido cuando 9 − x 2 − y 2 ≥ 0 , para que se pueda calcular la raíz cuadrada lo interior del radical debe ser un número positivo o cero. Despejando se tiene x 2 + y 2 ≤ 9 . ⎧⎛ x ⎞ ⎪ ⎫ ⎪ Es decir: Domf = ⎨⎜ ⎟ / x 2 + y 2 ≤ 9⎬ , ⎜ ⎟ los pares de números que pertenecen a la circunferencia ⎪⎝ y ⎠ ⎩ ⎪ ⎭ centrada en el origen de radio 3 y a su interior. y 3 x2 + y2 = 9 0 0 1 2 3 x Además el gráfico de z = 9 − x 2 − y 2 , es la semiesfera: z y x Ejemplo 3 Hallar el Dominio Natural para f ( x, y ) = x − 1 + y Solución. Para que la regla de correspondencia tenga sentido se necesita que x ≥1 y y≥0 ⎧ ⎪⎛ x ⎞ ⎫ ⎪ Es decir Domf = ⎨⎜ ⎟ / x ≥ 1 ∧ y ≥ 0⎬ . ⎪⎜ y ⎟ ⎩⎝ ⎠ ⎪ ⎭ . 73
  6. 6. MOISES VILLENA Cap. 3 Funciones de Varias Variables y 0 0 x 1 2 El gráfico, ahora es un lugar geométrico no conocido. Pero tenemos un indicio de la región en que habrá gráfico. Ejercicios Propuestos 3.1 Dibújese la región R del plano xy que corresponde al Dominio Natural de la función dada. 1. z=x y ⎛x⎞ ⎛ 2 ⎞ 8. f ( x, y ) = sen⎜ ⎟ ln⎜ ⎜ y⎟ ⎜x+ ⎟ x ⎝ ⎠ ⎝ y⎟ ⎠ 2. z=e y 9. z = arcsen( x + y ) x+ y 3. z= xy 10. ( z = arcsen x 2 + y 2 ) ⎛x⎞ 4. z = 4 − 12 x 2 − 36 y 2 11. z = arccos ⎜ ⎟ ⎝ y⎠ 5. z = ln (4 − x − y ) 6. z = ln ( y − x 2 ) 12. f ( x, y ) = ( ln 4 − x 2 − y 2) 1 2 ⎛ 9 x 2 − 6 y 2 − 36 ⎞ arcsen( x + y ) 7. w = ln⎜ ⎟ ⎜ 36 ⎟ ⎝ ⎠ Obtener trazas de las secciones transversales de la superficie es suficiente,en muchas ocasiones, para su análisis. 3. 4. CONJUNTO DE NIVEL 3.4.1 DEFINICIÓN Sea f : U ⊆ R n → R . Se llama CONJUNTO n DE NIVEL de f , al conjunto de puntos de R tales que f ( x1 , x2 , , xn ) = k , donde k ∈ R Si tenemos z = f ( x, y ) una función de dos variables. El Conjunto deNivel es llamado CURVAS DE NIVEL y serían las trayectorias en el plano xy tales74
  7. 7. MOISES VILLENA Cap. 3 Funciones de Varias Variablesque f ( x, y ) = k . Es decir, serían las curvas que resultan de la intersección dela superficie con los planos z = k , proyectadas en el plano xy . Ejemplo 1 Para f : R 2 → R tal que f ( x, y) = 6 − 2 x − 3 y , su conjunto de nivel serán puntos de R 2 tales que 6 − 2 x − 3 y = k . En este caso se llaman CURVAS DE NIVEL. Si k = 0 , tenemos el Nivel 0 , 6 − 2 x − 3 y = 0 Si k = 1 , tenemos el Nivel 1 , 6 − 2 x − 3 y = 1 Si k = 2 , tenemos el Nivel 2 , 6 − 2 x − 3 y = 2 etc. z 6 z = 6 − 2x − 3y k = 3 : 2x + 3 y = 3 k = 2 : 2x + 3 y = 4 k = 1: 2x + 3 y = 5 2 y k = 0 : 2x + 3y = 6 3 x Las curvas de nivel se dibujan en el plano xy , y para este caso serían: y k= 0: k= 2x 1: +3 2x y= k= +3 6 2: y= 2x 5 k= +3 x y= 3: 4 2x +3 y= 3 75
  8. 8. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 2. Grafique algunas curvas de nivel para f ( x, y ) = x 2 + y 2 SOLUCIÓN: Las curvas de nivel, para este caso, es la familia de trayectorias tales que x 2 + y 2 = k . (Circunferencias centradas en el origen) x2 + y2 = C C = 16 C =9 C=4 C =1 Si tenemos w = f ( x, y, z ) una función de tres variables. El Conjunto deNivel, f ( x, y, z ) = k , es llamado SUPERFICIES DE NIVEL Ejercicios Propuestos 3.2 Descríbase las curvas de nivel : 1. f ( x, y ) = 6 + x − y 2. f ( x, y ) = y 2 3. z = 4 − x2 − y2 4. z= x2 + y2 5. f ( x, y ) = xy 276
  9. 9. MOISES VILLENA Cap. 3 Funciones de Varias Variables3.5 LIMITES DE FUNCIONES DE VARIAS VARIABLES. Haciendo analogía con funciones de una variable, para definir el límiteahora, primero empecemos generalizando la definición de entorno o vecindad yotras definiciones que nos permitirán comprender el concepto de límite. 3.5.1 BOLA ABIERTA. Sea x0 ∈ R n y ∂ ∈ R muy pequeño. Se llama Bola Abierta de centro x0 y radio δ , ( ) denotada por Bn x0 ;δ , al conjunto de puntos de R n tales que la distancia a x0 es menor a ∂ . Es decir: ( ) { Bn x0 ;δ = x ∈ R n / x − x0 < ∂ } Si n = 1, tenemos B1 ( x0 ;δ ) = { x ∈ R / x − x0 < ∂} ; un intervalo(como en funciones de una variable) Si n = 2 , tenemos: B2 ( ( x0 , y0 ) ;δ ) = {( x, y ) ∈ R 2 / ( x, y ) − ( x0 , y0 ) <∂ } y 0< ( x − x0 ) − ( y − y0 ) <∂ 2 2 (x , y ) 0 0 x 3.5.2 PUNTO INTERIOR Sea U ⊆ R n y x0 ∈ R n , se dice que x0 es un punto interior de U , si y sólo si ∃∂ > 0 tal ( ) Bn x0 ; ∂ está contenida en U . 77
  10. 10. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3.5.3 CONJUNTO ABIERTO U ⊆ R n es un conjunto abierto, si todos sus puntos son interiores a U . 3.5.4 PUNTO EXTERIOR. Sea U ⊆ R n y x0 ∈ R n , se dice que x0 es un punto Exterior de U , si y sólo si ∃∂ > 0 tal que ( ) Bn x0 ; ∂ está totalmente fuera de U . 3.5.5 PUNTO DE FRONTERA Se dice que x0 es un punto de frontera de U , si no es ni interior ni exterior. 3.5.6 CONJUNTO CERRADO. U ⊆ R n es un conjunto cerrado si su complemento es abierto 3.5.7 CONJUNTO SEMIABIERTO. U ⊆ R n es un conjunto semiabierto si no es abierto y tampoco cerrado. 3.5.8 DEFINICIÓN DE LÍMITE Sea f : U ⊆ R n → R , donde U es un conjunto abierto, sea x0 un punto interior o de frontera de U , entonces: ⎝ 0 ()⎟ ⎠ ⎣ ( n 0 ) ⎦ () ⎛ lím f x = L ⎞ ≡ ∀ξ > 0, ∃∂ > 0 / ⎡ x ∈ B x ; ∂ , x ≠ x 0 ⎤ ⇒ f x − L < ξ ⎜ x→ x78
  11. 11. MOISES VILLENA Cap. 3 Funciones de Varias VariablesSi n = 2 tenemos:⎛ lím ⎞⎜ ( x , y )→( x , y ) f (x, y ) = L ⎟ ≡ ∀ξ > 0, ∃∂ > 0 / 0 < ( x − x 0 ) 2 + ( y − y 0 )2 < ∂ ⇒ f ( x, y ) − L < ξ⎝ 0 0 ⎠ z ( L ξ ξ ( z = f ( x, y ) y ∂ (x , y ) 0 0 x Es decir, que si tomamos a ( x, y ) cercano a ( x , y ) entonces 0 0 f ( x, y )estará próximo a L. Ejemplo x4 y Demostrar empleando la definición que lím =0 ( x , y ) → ( 0.0 ) x 4 + y 4 Solución: Debemos asegurar que x4 y ∀ξ > 0, ∃∂ > 0 / 0 < ( x − 0) + ( y − 0) < ∂ ⇒ −0 <ξ 2 2 x + y4 4 Recuerde que y = y 2 = entonces y ≤ x 2 + y 2 x4 y x4 y Por otro lado y = entonces y ≥ 4 . x 4 x + y4 Ahora note que: x4 y ≤ y ≤ x2 + y 2 < ∂ x + y4 4 x4 y Se concluye finalmente que: <∂ x4 + y 4 x4 y Es decir tomando ζ = ∂ , suficiente para concluir que: lím =0 ( x , y ) →( 0.0 ) x + y 4 4 Lo anterior va a ser complicado hacerlo en la mayoría de las situaciones,por tanto no vamos a insistir en demostraciones formales. Pero si se trata deestimar si una función tiene límite y cuál podría ser este, podemos hacer usodel acercamiento por trayectorias. 79
  12. 12. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 1 x2 Calcular lím ( x, y )→(0.0 ) x 2 + y 2 Solución: Aproximarse a (0,0 ) , significa estar con (x, y ) en una bola de R 2 y x2 + y2 < ∂ x (0,0) ∂ Si el límite existe, significa que si nos acercamos en todas las direcciones f deberá tender al mismo valor. 1. Aproximémonos a través del eje x , es decir de la recta y = 0 x2 Entonces, tenemos lím = lím 1 = 1 . ( x,0 )→(0.0 ) x 2 + 0 2 x→0 2. Aproximémonos a través del eje y , es decir de la recta x = 0 02 Entonces, tenemos lím = lím 0 = 0 . (0, y )→(0.0 ) 0 2 + y 2 x →0 Se observa que los dos resultados anteriores son diferentes. x2 Por tanto, se concluye que: lím no existe. ( x, y )→(0.0 ) x 2 + y 2 Ejemplo 2 x2 y Calcular lím ( x, y )→(0.0 ) x 4 + y 2 Solución: Determinando la convergencia de f , para diversas direcciones: x2 0 1. Eje x ( y = 0 ): lím = lím 0 = 0 x →0 x4 + 02 x →0 2 0 y 2. Eje y ( x = 0 ): lím = lím 0 = 0 0 + y 2 y →0 y →0 4 3. Rectas que pasan por el origen ( y = mx) : x 2 (mx ) mx 3 mx 3 mx = lím = lím = lím lím x →0 x + (mx ) 4 2 x →0 x +m x 4 2 2 x →0 2 ( x x +m 2 2 ) x →0 (x 2 + m2 )=080
  13. 13. MOISES VILLENA Cap. 3 Funciones de Varias Variables 4. Parábolas que tengan vértice el origen ( y = ax 2 ) ( ) x 2 ax 2 = lím ax 4 = lím ax 4 = lím a = a ≠0 lím x →0 x4 + (ax ) 2 2 x →0 x +a x 4 2 4 x →0 4 ( x 1+ a 2 ) x →0 1 + a 2 1+ a 2 x2 y Por tanto, lím NO EXISTE. ( x, y )→(0.0 ) x 4 + y 2 El acercamiento por trayectoria no nos garantiza la existencia del límite,sólo nos hace pensar que si el límite existe, ese debe ser su valor. Entonces¿cómo lo garantizamos?. Si la expresión lo permite podemos usar coordenadaspolares. Ejemplo x2 y Calcular lím ( x, y )→(0.0 ) x 2 + y 2 Solución: Determinando la convergencia de f , para diversas direcciones: x2 0 1. Eje x ( y = 0 ): lím = lím 0 = 0 x →0 x2 + 02 x →0 2 0 y 2. Eje y ( x = 0 ): lím = lím 0 = 0 0 2 + y 2 y →0 y →0 3. Rectas que pasan por el origen ( y = mx) : x 2 (mx ) mx 3 mx 3 mx = lím = lím lím x →0 x + (mx ) 2 2 x →0 x2 + m2 x2 x →0 ( x 2 1+ m2 ) = lím (1 + m ) = 0 x →0 2 4. Parábolas que tengan vértice el origen ( y = ax 2 ) x 2 ( ax 2 ) ax 4 ax 4 ax 2 lím = lím = lím 2 = lím =0 x →0 x 2 + ( ax ) 2 2 x →0 x + a x 2 2 4 ( x →0 x 1 + a 2 x 2 ) x→0 1 + a 2 x 2 Probemos con otra trayectoria 5. x = ay 2 lím ( ay ) y 2 2 = lím a2 y5 = lím 2 2 2 a2 y5 a2 y3 = lím 2 2 =0 y →0 ( ay ) + y 2 2 2 y →0 a y +y 2 4 2 y →0 y ( a y + 1) ( y →0 a y + 1 ) Parecer ser que el límite es cero, pero todavía no está garantizado. ¿Por qué? Demostrarlo, no es una tarea sencilla. Usemos coordenadas polares: ( r cos θ ) ( rsenθ ) 2 x2 y lím = lím ( x , y ) →( 0.0 ) x 2 + y 2 r →0 r2 r 3 senθ cos 2 θ = lím r →0 r2 = lím ( rsenθ cos 2 θ ) r →0 En la parte última se observa que senθ cos 2 θ es acotado por tanto lím ( rsenθ cos 2 θ ) = 0 r →0 Lo anterior quiere decir que en situaciones especiales (¿cuáles?), podemosutilizar coordenadas polares para demostrar o hallar límites. 81
  14. 14. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 1 Calcular lím ( sen x 2 + y 2 ) ( x, y )→(0.0 ) x +y2 2 Solución: Empleando coordenadas polares lím ( sen x 2 + y 2 ) = lím sen(r ) = 1 2 ( x , y )→(0.0 ) x2 + y2 r →0 r2 Ejemplo 2 x2 y5 Calcular lím ( x , y ) →( 0.0 ) 2 x 4 + 3 y10 Solución: Empleando coordenadas polares x2 y5 r 2 cos 2 θ r 5 sen5θ lím = lim 4 ( x , y ) →( 0.0 ) 2 x + 3 y 4 10 r → 0 2r cos 4 θ + 3r 10 sen10θ r 7 cos 2 θ sen5θ = lim r →0 r 4 ⎡ 2 cos 4 θ + 3r 6 sen10θ ⎤ ⎣ ⎦ r 3 cos 2 θ sen5θ = lim r → 0 2 cos 4 θ + 3r 6 sen10θ No se puede concluir. Analicemos algunas trayectorias: 02 y 5 x=0 lím =0 ( x , x ) → ( 0,0 ) 2 ( 0 4 ) + 3 y10 x 2 05 y=0 lím =0 ( x , x ) →( 0,0 ) 2 ( x ) + 3( 0) 4 10 x 2 x5 x7 x4 y=x lím = lím 4 = lím =0 ( x , x ) → ( 0,0 ) 2 x 4 + 3 x10 x →0 x ( 2 + 3x 6 ) x →0 2 + 3x 6 x 2 x10 x12 x8 y = x2 lím = lím 4 = lím =0 ( x, x ) →( 0,0) 2 x 4 + 3 x 20 x →0 x ( 2 + 3 x16 ) x →0 2 + 3x 6 2 5 Ahora, probemos con una trayectoria nueva x = y 2 (se la deduce observando la expresión original) ( )y 5 2 2 5 y y10 1 lím = lím = ≠0 2( y ) + 3y ⎛ 52 ⎞ 5 4 x → 0 2 y10 + 3 y10 5 ⎜ y , y ⎟ → ( 0,0 ) 2 10 ⎝ ⎠ Por tanto se concluye que el límite NO EXISTE.82
  15. 15. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3.5.8.1 TEOREMA DE UNICIDAD. Sea f : U ⊆ R n → R , donde U es un conjunto abierto, sea x0 un punto interior o de frontera de U , entonces: () Si lim f x = L y lim f x = M entonces L = M x→ x0 x→ x0 () 3.5.8.2 TEOREMA PRINCIPAL. () () Si lim f x = L y lim g x = M entonces: x→ x0 x→ x0 1. lim ⎡ f ( x ) + g ( x) ⎤ = lim f ( x ) + lim g ( x) = L + M ⎣ x→ x0 ⎦ x→ x 0 x→ x 0 2. lim ⎡ f ( x ) − g ( x) ⎤ = lim f ( x ) − lim g ( x) = L − M ⎣ x→ x0 ⎦ x→ x 0 x→ x0 3. lim ⎡ f ( x ) g ( x) ⎤ = lim f ( x ) lim g ( x) = LM ⎣ x→ x0 ⎦ x→ x0 x→ x 0 ⎡f ⎤ lim f ( x ) L M ≠ 0 4. lim ⎢ ( x ) ⎥ = = ; x→ x0 ⎣g x→ x0 ⎦ lim g ( x) M x→ x0Por tanto en situaciones elementales, la sustitución basta. Ejemplo lím (x ( x, y )→(1.2 ) 2 + 2y − 3 = 8 ) Ejercicios Propuesto 3.3 1. Calcular los siguientes límites: 2x − y 2 lim (x + 3 y ) a) 2 e) lím x→2 ( x , y →(0,0 )) 2 x 2 + y y →1 b) f) x2 y limysen ( xy ) π x→ lim x 2 + y 2 x →0 4 y→2 y →0 ⎛ y⎞ x 2 sen⎜ ⎟ sen(x + y ) c) ⎝k⎠ g) lim lim y ( x, y )→(0,0 ) y x→k y →0 d) e xy − 1 lim x →0 x y →0 83
  16. 16. MOISES VILLENA Cap. 3 Funciones de Varias Variables 2. Calcúlese el límite de f (x, y ) cuando (x, y ) → (a, b ) hallando los límites: lim g ( x) y x→a lim h ( y ) , donde f ( x, y ) = g ( x ) h ( y ) y→ b a) (1 + senx )(1 − cos y ) c) cos x seny lim y lim y x →0 x →0 y →0 y →0 b) 2 x( y − 1) d) xy lim (x + 1)y lim (x − 1)e y x →1 x →1 y →2 y →0 3.6. CONTINUIDAD Sean f : U ⊆ R n → R , sea x0 un punto U . Decimos que f es continua en x0 si y sólo si: lim f x = f x 0 x→ x0 () ( ) Ejemplo. ⎧ xy 2 ( ⎪ 2 ; x, y ) ≠ ( 0, 0 ) Analizar la continuidad de f ( x, y ) = ⎨ x + y ⎪ 0 ; ( x, y ) = ( 0, 0 ) ⎩ En el punto ( 0, 0 ) . SOLUCIÓN: Para que la función sea continua se debe cumplir que lim f ( x, y ) = 0 ( x , y ) → ( 0,0) xy Determinemos el límite. lim ( x , y ) → ( 0,0 ) x + y2 2 Acercándonos por trayectorias. 0 y = 0; lim 2 = 0 x →0 x 0 x = 0; lim 2 = 0 y →0 y x2 1 y = x ; lim = x →0 x 2 + x 2 2 xy Entonces lim ( x , y ) → ( 0,0 ) x 2 + y 2 no existe. Por tanto, f NO ES CONTINUA EN ( 0, 0 ) .84
  17. 17. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3.6.1 CONTINUIDAD EN UN INTERVALO Sea f : U ⊆ R n → R . Se dice que f es continua en todo U si y sólo si es continua en cada punto de U . 3.6.1.1 Teorema Si f y g son continuas en x0 , entonces también son continuas: f + g , f − g , fg , f g ( ( ) ) g x0 ≠ 0 . Ejercicios propuestos 3.4 Analice la continuidad en ( 0, 0 ) de las siguientes funciones: ⎧ sen xy ⎪ , ( x, y ) ≠ (0,0 ) a) f ( x, y ) = ⎨ xy ⎪ 1 , ( x, y ) = (0,0 ) ⎩ ⎧ ⎪e xy , b) f ( x, y ) = ⎨ (x, y ) ≠ (0,0) ⎪1 , ⎩ (x, y ) = (0,0) ( ⎧ cos x 2 + y 2 ⎪1 − ) , x2 + y2 ≠ 0 c) f ( x, y ) = ⎪ ⎨ x2 + y2 ⎪ ⎪ ⎩ −8 , x2 + y2 = 0 ⎧ 1 − x2 − y2 ⎪ , x2 + y2 ≠ 0 d) f ( x, y ) = ⎪ 1 − x 2 − y 2 ⎨ ⎪ ⎪ ⎩ 1 , x2 + y2 = 0 ⎧ x3 + y3 ⎪ , ( x, y ) ≠ (0,0) e) f ( x, y ) = ⎨ x 2 + y 2 ⎪ ⎩ 0 , ( x, y ) = (0,0) ⎧ xy , ( x, y ) ≠ ( 0, 0 ) f) f ( x, y ) = ⎪ x + y ⎨ ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩ ⎧ xy ⎪ + x − y , ( x, y ) ≠ ( 0, 0 ) g) f ( x, y ) = ⎨ x 2 + y 2 ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩ ⎧ 1 − x2 − 4 y 2 , x2 + 4 y 2 ≤ 1 h) f ( x, y ) = ⎪ ⎨ ⎪ ⎩ 0 , x2 + 4 y2 > 1 85
  18. 18. MOISES VILLENA Cap. 3 Funciones de Varias Variables3.7. DERIVADA DE UNA FUNCIÓN ESCALAR. Para funciones de una variable, la derivada se la definió como el cambioinstantáneo que experimenta la función cuando cambia su variableindependiente x . Aquí había que considerar una sola dirección, para funciónde varias variables debería ser el cambio instantáneo que tiene la función entodas las direcciones en la vecindad de un punto. 3.7.1 DERIVADA DIRECCIONAL. Derivada de un campo escalar con respecto a un vector. Sea f : U ⊆ R n → R , donde U es un conjunto → abierto, x 0 un punto de U . Sea v un vector de Rn . → La derivada de f en x 0 con respecto a v , denotada por f ´⎛ x 0 ; v ⎞ o también D f (x 0 ), se → ⎜ ⎟ ⎝ ⎠ → v define como: ⎛ ⎞ ( ) → f ⎜ x0 + v ⎟ − f x0 ⎛ →⎞ f ´⎜ x 0 ; v ⎟ = lim ⎝ → ⎠ ⎝ ⎠ → →0 v v Cuando este límite existe → → → → Ahora bien, si decimos que v =h entonces v = hu donde u unVECTOR UNITARIO de R n , entonces: La derivada direccional de f en x 0 con → respecto u es: f ⎛ x 0 + h u ⎞ − f (x 0 ) → ⎜ ⎟ ⎛ x 0 ; u ⎞ = lim ⎝ ⎠ → f ´⎜ ⎟ h →0 ⎝ ⎠ h86
  19. 19. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 1 ⎛ →⎞ () 2 Sea f x = x ; x ∈ R n . Calcular f ´⎜ x 0 , v ⎟ . ⎜ ⎟ ⎝ ⎠ SOLUCIÓN: ⎛ ⎞ ( ) → f ⎜ x0 + h u ⎟ − f x0 ⎛ → ⎞ ⎝ ⎠ f ´⎜ x 0 ; v ⎟ = lim = ⎝ ⎠ h→0 h → 2 2 x0 + h u − x0 = lim h→0 h ⎛ ⎞ ⎛ ⎞ ( ) ( ) → → ⎜ x0 + h u ⎟ • ⎜ x0 + h u ⎟ − x0 • x0 = lim ⎝ ⎠ ⎝ ⎠ h→0 h → → → x 0 • x 0 + 2h u • x 0 + h 2 u • u − x 0 • x 0 = lim h→0 h → → → 2h u • x 0 + h 2 u • u = lim h→0 h ⎛ → → → ⎞ = lim ⎜ 2 u • x 0 + h u • u ⎟ h→0 ⎝ ⎠ → = 2 u • x0Si f : U ⊆ R 2 → R (una función de dos variables), entonces: f ⎛ ( x0 , y 0 ) + h u ⎞ − f ( x0 , y 0 ) → ⎜ ⎟ ⎛ ( x , y ); u ⎞ = lim ⎝ ⎠ → f ´⎜ 0 0 ⎟ h→0 ⎝ ⎠ h Ejemplo 2 → ⎛ 2 2⎞ Sea f ( x, y ) = x 2 + y 2 . Hallar D f (1, 2 ) donde u = ⎜ → ⎜ , ⎟ ⎟ u ⎝ 2 2 ⎠ SOLUCIÓN: Empleando la definición: ⎛ ⎛ 2 2 ⎞⎞ ⎜ 2 , 2 ⎟ ⎟ − f (1, 2 ) f ⎜ (1, 2 ) + h ⎜ ⎟⎟ ⎜ ⎝ ⎝ ⎠⎠ D→ f (1, 2 ) = lim u h→0 h ⎛ 2 2⎞ f ⎜1 + h ⎜ , 2+h ⎟ − f (1, 2 ) 2 2 ⎟ = lim ⎝ ⎠ h →0 h ⎡⎛ 2 2⎞ ⎛ 2⎞ ⎤ 2 ⎢⎜ 1 + h ⎟ +⎜2+ h ⎟ ⎥ − ⎡1 + 2 ⎤ 2 2 ⎢⎜⎝ 2 ⎟ ⎜ ⎠ ⎝ 2 ⎟ ⎥ ⎣ ⎠ ⎦ ⎦ = lim ⎣ h →0 h ⎡ h2 h2 ⎤ ⎢1 + h 2 + + 4 + 2h 2 + ⎥ − [5] = lim ⎣ 2 2⎦ h →0 h 5 + 3h 2 + h 2 − 5 = lim h →0 h 3h 2 + h 2 = lim h →0 h ( = lim 3 2 + h h →0 ) =3 2 87
  20. 20. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 3 ⎧ xy 2 ( ⎪ 2 ; x, y ) ≠ ( 0, 0 ) Sea f ( x, y ) = ⎨ x + y . ⎪ 0 ; ( x, y ) = ( 0, 0 ) ⎩ → Hallar D→ f ( 0, 0 ) donde u = ( cos θ , senθ ) u SOLUCIÓN: Aplicando la definición: D→ f ( 0, 0 ) = lim f ( ( 0, ) + h ( cosθ , senθ ) ) − f ( 0, 0 ) u h →0 h f ( h cos θ , hsenθ ) − f ( 0, 0 ) = lim h →0 h ⎡ ( h cos θ )( hsenθ ) ⎤ ⎢ ⎥−0 ⎣ h2 ⎦ = lim h →0 h cos θ senθ = lim h →0 h En la última expresión: π π 1. Si θ = 0, , π ,3 entonces D→ f ( 0, 0 ) = 0 2 2 u π π 2. Si θ ≠ 0, , π ,3 entonces D→ f ( 0, 0 ) no existe. 2 2 u Ejemplo 4 ⎧ x2 y ⎪ ; ( x, y ) ≠ ( 0, 0 ) Sea f ( x, y ) = ⎨ x 4 + y 2 . ⎪ 0 ; ( x, y ) = ( 0, 0 ) ⎩ → Hallar D→ f ( 0, 0 ) donde u = ( cos θ , senθ ) u Solución: Aplicando la definición: f ( h cos θ , hsenθ ) − f ( 0, 0 ) D→ f ( 0, 0 ) = lim u h →0 h ⎡ ( h cos θ )2 ( hsenθ ) ⎤ ⎢ 2 ⎥ −0 ⎢ ( h cos θ ) + ( hsenθ ) ⎥ 4 = lim ⎣ ⎦ h →0 h h3 cos 2 θ senθ h 2 ( h 2 cos 4 θ + sen 2θ ) = lim h →0 h cos θ senθ 2 = lim 2 h → 0 h cos 4 θ + sen 2θ En la última expresión: 1. Si θ = 0, π ( senθ = 0 ) entonces D→ f ( 0, 0 ) = 0 u cos 2 θ 2. Si θ ≠ 0, π ( senθ ≠ 0 ) entonces D→ f ( 0, 0 ) = ( existe). u senθ88
  21. 21. MOISES VILLENA Cap. 3 Funciones de Varias Variables Más adelante daremos una técnica para hallar derivadas direccionales sinemplear la definición. Ejercicios Propuestos 3.5 1. Determine la derivada direccional de f en el origen en la dirección del vector unitario ( a, b ) . ⎧ x3 − y 3 ⎪ 2 si ( x, y ) ≠ ( 0, 0 ) a) f ( x, y ) = ⎨ x + y 2 ⎪ 0 si ( x, y ) = ( 0, 0 ) ⎩ ⎧ x3 y 2 − xy 3 ⎪ 2 si ( x, y ) ≠ ( 0, 0 ) b) f ( x, y ) = ⎨ x + y 2 ⎪ 0 si ( x, y ) = ( 0, 0 ) ⎩ ⎧ y 2 − x2 ⎪ xy 2 si ( x, y ) ≠ ( 0, 0 ) c) f ( x, y ) = ⎨ x + y 2 ⎪ 0 si ( x, y ) = ( 0, 0 ) ⎩ ⎧ xy ⎪ +x− y , ( x, y ) ≠ ( 0, 0 ) d) f ( x, y ) = ⎨ x 2 + y 2 ⎪ ⎩ 0 , ( x, y ) = ( 0, 0 ) ⎧ y3 x ⎪ e) f ( x, y ) = ⎨ x 2 + y 6 , ( x, y ) ≠ ( 0, 0 ) ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩ Un caso especial de las derivadas direccionales es cuando consideramosdirección con respecto a eje x y con respecto al eje y . 3.7.2 Derivada Parcial. Sea f : U ⊆ R n → R , donde U es un conjunto abierto, x 0 un punto de U , h ∈ R . Sea → e i = (0,0, ,1, ,0 ) un vector canónico unitario de R n . La derivada parcial de f en x 0 con respecto a → e i (o con respecto a su i − ésima variable), ∂f denotada por ∂xi (x 0 ), se define como: ⎛ x 0 + h e i ⎞ − f (x 0 ) → f⎜ ⎟ ∂f ∂xi (x 0 ) = lim h →0 ⎝ h ⎠ Cuando este límite existe 89
  22. 22. MOISES VILLENA Cap. 3 Funciones de Varias Variables f : U ⊆ R 2 → R (una función de dos variables), entonces los vectores Sicanónicos unitarios serían: e1 = i = (1,0 ) y e2 = ˆ = (0,1) . Las derivadas ˆ jparciales serían: ∂f ( x0 , y0 ) = lim f ( ( x , y ) + h (1,0 ) ) − f ( x , y ) 0 0 0 0 ∂x1 h →0 h ∂f Denotada simplemente como: o también f x , es decir: ∂x ∂f f ( x0 + h, y0 ) − f ( x0 , y0 ) = lim ∂x h→0 h Y la otra derivada parcial sería: ∂f ( x0 , y0 ) = lim f ( ( x , y ) + h ( 0,1) ) − f ( x , y ) 0 0 0 0 ∂x2 h →0 h ∂f Denotada simplemente como: o también f y , es decir: ∂y ∂f f ( x0 , y0 + h ) − f ( x0 , y0 ) = lim ∂y h→0 h Ejemplo 1 ∂f ∂f Sea f (x, y ) = x 2 y 3 , obtener y . ∂x ∂y SOLUCIÓN: ∂f f ( x + h, y ) − f ( x, y ) = lim ∂x h → 0 h ( x + h) y3 − x2 y3 2 = lim h →0 h = lim ( x 2 + 2 xh + h 2 ) y 3 − x 2 y 3 h →0 h x 2 y 3 + 2 xhy 3 + h 2 y 3 − x 2 y 3 = lim h →0 h 2 xhy + h y 3 2 3 = lim h →0 h = lim ( 2 xy 3 + hy 3 ) h →0 ∂f = 2 xy 3 ∂x90
  23. 23. MOISES VILLENA Cap. 3 Funciones de Varias Variables ∂f f ( x, y + h ) − f ( x, y ) = lim ∂y h → 0 h x2 ( y + h) − x2 y3 3 = lim h →0 h x 2 ( y 3 + 3 y 2 h + 3 yh 2 + h3 ) − x 2 y 3 = lim h →0 h x 2 y 3 + 3 x 2 y 2 h + 3x 2 yh 2 + x 2 h3 − x 2 y 3 = lim h →0 h 3x 2 y 2 h + 3x 2 yh 2 + x 2 h3 = lim h →0 h = lim ( 3 x y + 3 x 2 yh + x 2 h 2 ) 2 2 h →0 ∂f = 3x 2 y 2 ∂y ∂f Note que se obtiene como una derivada para función de una variable, ∂xen este caso x , y considerando a la otra variable y como constante. ∂f Análogamente, si se desea obtener , deberíamos derivar considerando ∂ysólo a y como variable. Ejemplo 2 ∂f ∂f Sea f (x, y ) = sen x 2 + y 3 , obtener y . ∂x ∂y SOLUCIÓN: ∂f ∂x ⎡1 ( = cos x 2 + y 3 ⎢ x 2 + y 3 ) −1 2 (2 x )⎤ ⎥ ⎣2 ⎦ ∂f ∂y ⎡1 ( = cos x 2 + y 3 ⎢ x 2 + y 3 ) (3 y )⎤ −1 2 ⎥ 2 ⎣2 ⎦ En otros tipos de funciones habrá que aplicar la definición. Ejemplo 3 ⎧ xy 2 ( ⎪ 2 ; x, y ) ≠ ( 0, 0 ) Sea f ( x, y ) = ⎨ x + y . Hallar f x ( 0, 0 ) y f y ( 0, 0 ) ⎪ 0 ; ( x, y ) = ( 0, 0 ) ⎩ SOLUCIÓN: Aplicando la definición: ⎡ h ( 0) ⎤ ⎢ 2 2 ⎥ −0 a) f ( 0, 0 ) = lim f ( h, 0 ) − f ( 0, 0 ) = lim ⎣ h + 0 ⎦ 0 = lim = 0 x h→0 h h →0 h h→0 h ⎡ 0 (h) ⎤ ⎢ 2 2 ⎥ −0 f ( 0, h ) − f ( 0, 0 ) ⎣0 + h ⎦ 0 b) f y ( 0, 0 ) = lim = lim = lim = 0 h→0 h h →0 h h→0 h 91
  24. 24. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejercicios propuestos 3.6 ∂f ∂f 1. Encontrar , si : ∂x ∂y a) f ( x, y ) = xy d) f ( x, y ) = xe x + y 2 2 ( ) ( b) f ( x, y ) = x 2 + y 2 log e x 2 + y 2 ) e) f ( x, y ) = x cos x cos y c) f ( x, y ) = cos(ye )sen x sen ( xy ) f) f ( x, y ) = ∫ g ( t ) dt xy y2 2. Hallar f x ( 0, 0 ) y f y ( 0, 0 ) , para: ⎧ xy2 ⎪ 2 2 si ( x, y ) ≠ ( 0,0) a) f ( x, y ) = ⎨ x + y ⎪ 0 si ( x, y ) = ( 0,0) ⎩ ⎧ x3 y 2 − xy 3 b) f ( x, y ) = ⎪ x 2 + y 2 , ( x, y ) ≠ ( 0, 0 ) ⎨ ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩ ⎧ 2 ⎛ 1 ⎞ c) f ( x, y ) = ⎨ ( ⎪ x − y sen ⎜ 2 2 ) 2 ⎟ , ( x, y ) ≠ ( 0, 0 ) ⎝x +y ⎠ ⎪ ⎩ 0 , ( x, y ) = ( 0, 0 ) ⎧ sen ( x 2 − y 2 ) ⎪ ; ( x, y ) ≠ ( 0, 0 ) d) f ( x, y ) = ⎨ x+ y ⎪ ⎩ 0 ; ( x, y ) = ( 0, 0 ) ⎧ xy , ( x, y ) ≠ ( 0, 0 ) e) f ( x, y ) = ⎪ x + y ⎨ ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩ ⎧ y3 x f) f ( x, y ) = ⎪ x 2 + y 6 , ( x, y ) ≠ ( 0, 0 ) ⎨ ⎪ 0 , ( x, y ) = ( 0, 0 ) ⎩92
  25. 25. MOISES VILLENA Cap. 3 Funciones de Varias Variables 3.7.2.1 INTERPRETACIÓN GEOMÉTRICA DE LAS DERIVADAS PARCIALES Se ha definido la derivada tratando de que se entienda como la variación de ∂fla función con respecto a una dirección. Entonces la derivada parcial , será ∂xla pendiente de la recta tangente paralela al plano zx , observe la figura: z ∂f m= (x0 , y0 ) ∂x (x0 , y0 , f (x0 , y0 )) • Δz z = f ( x, y ) Δx y0 y x0 (x0 , y0 ) h x0 + h (x0 + h, y0 ) x ⎛ ∂f ⎞ Un vector director de esta recta será de la forma: S = ⎜1, 0, ⎟ S ⎝ ∂x ⎠ ∂f En cambio, la derivada parcial , será la pendiente de la recta tangente ∂yparalela al plano zy , observe la figura: z z = f ( x, y ) ∂f m= (x0 , y0 ) ∂y (x0 , y0 , f (x0 , y0 )) Δz • Δy y0 h y0 + h y x0 (x0 , y0 ) (x 0 , y 0 + h ) x ⎛ ∂f ⎞ Un vector director S de esta recta será de la forma: S = ⎜ 0,1, ⎟ ⎝ ∂y ⎠ 93
  26. 26. MOISES VILLENA Cap. 3 Funciones de Varias Variables Ejemplo 1 Encontrar la ecuación de la recta tangente a la curva de intersección de la superficie que tiene por ecuación z = x 2 + y 2 con el plano y = 1 en el punto (2,1,5) . SOLUCIÓN: Realizando un gráfico, tenemos: z z = x2 + y2 (2,1,5)• y =1 y ∂z m= dx ( 2,1) dz → ⎛ ∂f ⎞ S = ⎜1,0, ⎟ x ⎝ ∂x ⎠ dx ⎧ x = x0 + at ⎪ La ecuación de toda recta es de la forma l : ⎨ y = y0 + bt . ⎪ z = z + ct ⎩ 0 El punto está dado: (x0 , y0 , z0 ) = (2,1,5) . → ⎛ ∂f ⎞ Los vectores directrices son paralelos al plano zx y por tanto son de la forma: S = ⎜ 1, 0, ⎟ . ⎝ ∂x ⎠ ¿Por qué? ∂z La pendiente de la recta será m = (2,1) ; que definirá la dirección de los vectores directores. dx ∂z Ahora bien, si z = x 2 + y 2 entonces = 2x . ∂x ∂z Evaluando tenemos: = 2 x = 2(2) = 4 ∂x → Por tanto S = (1, 0, 4 ) ⎧ x = x0 + at = 2 + t ⎪ Finalmente la ecuación de la recta buscada será: l : ⎨ y = y0 + bt = 1 + 0t ⎪ z = z + ct = 5 + 4t ⎩ 094

×