Drools Planner webinar (2011-06-15): Drools Planner optimizes automated planning

Geoffrey De Smet
Geoffrey De SmetSoftware developer at Red Hat
Geoffrey De Smet Drools Planner optimizes automated planning
Agenda ,[object Object]
Use cases ,[object Object],[object Object]
Results
Future
Drools and jBPM Platform Overview
Business Logic Integration Business Logic Integration Platform Rule engine Workflow Complex event processing (CEP) Business Rule Management System (BRMS) Automated planning
Use cases What are planning problems?
 
 
 
 
 
Hard constraint implementation // a nurse can only work one shift per day rule   "oneShiftPerDay" when $left :  EmployeeAssignment ( $employee : employee, $shiftDate : shiftDate, $leftId : id ) $right :  EmployeeAssignment ( employee == $employee , shiftDate == $shiftDate , id > $leftId ) then // Lower the hard score with a weight ... end
 
Soft constraint implementation rule   "dayOffRequest" when $dayOffRequest :  DayOffRequest ( $employee : employee , $shiftDate : shiftDate , $weight : weight ) $employeeAssignment :  EmployeeAssignment ( employee == $employee , shiftDate == $shiftDate ) then // Lower the soft score with the weight $weight ... end Object orientated Readable by domain experts Fast and scalable: Indexes, ReteOO, ... Java methods usable Isolated
Hospital bed planning
Hospital bed planning constraints Hard constraints No 2 patients in same bed in same night Room gender limitation Department minimum or maximum age Patient requires specific room equipment(s) Soft constraints Patient prefers maximum room size Department specialization Room specialization Patient prefers specific room equipment(s)
Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) Numbers from a real dataset
Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > humans? 7 000 000 000 humans Source: NASA (wikipedia)
Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > minimum atoms in the observable universe? 10^80 Source: NASA and ESA (wikipedia)
Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > atoms in the universe if every atom is a universe of atoms? (10^80)^80 = 10^6400 Source: NASA and ESA (wikipedia)
Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) A little over 10^6851
Do the math 1 patient 310 beds 310 ways to schedule 1 patient 2 patients 310 * 310 = 96 100 3 patients 310 * 310 * 310 = 29 791 000 2750 patients 310 * 310 * ... * 310 310^2750 = a little over 10^6851
A little over 10^6851 17565400009613647714189309909847019528176031676612802408947467896773536824694320 25377105894429532838896584732142182052033826938421876324335318655320329177415624 34019697177044291997231955740197313574392215860109009013187756616189881491857442 89903563474940721372704649669447515706252843900344472960295273324597346780837674 88697227533874455473777198677633776549677388281039595554235192833141437843928340 51328923587442242154997922875864744269141114570273352582691671031946927906652177 66902628732489519488236496931246157419949856522543510386164584826962224171420152 25565850232385350464349705325292272792440640617915932702527496869105242581827012 17106705526418375034351087944819610624220027292887379804041858752339124281780095 58605680683578864680145557998942327371019832139824665975180911386722774004539981 34278552385168663637443267160148549642311093017595330858041676796683206809536596 46569395830894437089458443238882278162963824641222099807169369905394994720275907 38400791514217875461942733015467480308665074008529461146577114465977072581447925 88212290682716057000722801705649967418814850790871678616492253646749058716362694 56894529270615321506374546152336416456127910274106084164763806424690851439804640 67453971429400369608313929289399595696359958354101721624055729520838609453039985 59272628937624385694142906376790391997713872443251360270344814604597056658507680 95764769840369232215532708782795742398666571567290512950859701002128560257873450 34666683590797377984104207041334053480226788236770435009014979334517769826461063 28117889455452701285996652060625309878869936718080636701237289582496335799276496 97991233610444564616874109815224930933169104649370892996558804470140748763978122 10684054337706530175130912335567383560436635091489083375525519539844805718811296 85807650768511219249940528633766810704609502399987122465510787717422067936021241 05730014911043812216621387647568988345883813404108921585448372002290085339308167 94663631470201197595487045022087615873490295940409113638894083753062801416644858
A little over 10^6851 70757942487218045035508810158461046502812782292385633846174494690914238485407798 37976573852840248463244968564240141089763763217269495446550923090738150172870668 68402081731644263484686141346509306107283418762923467113106773326485539514229919 89751468506508069513397904821612697383659788320905691994864296149528670873271380 18006650770249052559419638332728972636228024127885657959189574420249964658137384 98299648678707389648424263725804209284739296524664530660893065815727451390562561 81505240205578741292314133858985615181677968313683876880079649763914095651402272 04777610845144506688836696844897279181666903094579081039689572524839918882203466 75664835223276850061950801785251074912552450542389767056205475823297598574505575 83834141364747838395082871684183199560673441708538602779816347949276957201268066 62737283137076807355893467941027682428304918329951886951690865417997171855081020 26756284570976172802328890960381286165431282000890478132235199027141966946398442 73986565523012106816309974964021700560537928432528631741787455155275823033005847 63710721074772137206636934675415209083984961138990816735390734923436827652228741 07306375553429574524282669680025732278499336914490634182865013110363140489605282 49465982665132492491072491788618403253474529440348798670244615185355092357283764 93638760707623418191667075526942154653033728468983877312232305317179427144435853 36388068489698718841685828476130163980130066330161405037431756112554842734192914 35502775849577615159921009571496639402549077872124227731739936370100132762333353 47390808021571900433548715701062002052376364885669272869945947160341077659253581 65207459958613365778774312937767961242646970494187951860105460569752264242274554 46011031581123438684685838655333776830823720356749120051129394691394743488410658 61354353779545576065515784960221442891508405618131446589507592449826384604047449 56226545521579338675725427458383708893912437023584592443865610814799055455700844 91443709439642235090455604548030317754849613813010298858282615659336373785985294
A little over 10^6851 58667337266411706925088329158776619790296442059252886388879455197093987039774900 08729398961010317200010000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000
A little over 10^6851 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 The search space is big! Compare with WWW size 22 020 000 000 pages Each possible solution 2750 patients scheduled into 310 beds Still need to calculate the score!  => Drools Expert
Brute force? Throw hardware at it? ,[object Object]
Algorithms Operations research is fun.
N Queens: use case ,[object Object]
No 2 queens can attack each other ,[object Object],Score = -2 Score = 0
Brute force algorithm Useless with a real world n
A huge performance gain because of Drools Expert Critical for ALL of your constraints! No extra code thanks to Drools Expert
Branch and bound algorithm Useless with a real world n
Useful algorithms ,[object Object]
Easy to implement ,[object Object],[object Object],[object Object],[object Object]
More time = better score
Greedy algorithm First fit
Greedy algorithm First fit decreasing Human planner are worse than this algorithm and take more time. (*) (*) with a real world n
Metaheuristics: Move things around ,[object Object]
Give 2 queens each others rows
... Score = -6 Score = -4
Local search 1/2
Local search 2/2 ,[object Object]
Local optima ,[object Object]
2)  Simple local search
3) Stuck in local optimum! Source: Wikipedia Score function
Local search++ Don't get stuck in local optima ,[object Object]
Great deluge, late acceptance, …
Hyper heuristics
Termination ,[object Object]
Score attained
1 of 53

Recommended

2010 04-20 san diego bootcamp - drools planner - use cases by
2010 04-20 san diego bootcamp - drools planner - use cases2010 04-20 san diego bootcamp - drools planner - use cases
2010 04-20 san diego bootcamp - drools planner - use casesGeoffrey De Smet
1K views28 slides
2011-03-09 London - Drools Planner in a nutshell by
2011-03-09 London - Drools Planner in a nutshell2011-03-09 London - Drools Planner in a nutshell
2011-03-09 London - Drools Planner in a nutshellGeoffrey De Smet
1.3K views28 slides
Developing applications with rules, workflow and event processing (it@cork 2010) by
Developing applications with rules, workflow and event processing (it@cork 2010)Developing applications with rules, workflow and event processing (it@cork 2010)
Developing applications with rules, workflow and event processing (it@cork 2010)Geoffrey De Smet
2.5K views100 slides
Pushing the rule engine to its limits with drools planner (parisjug 2010-11-09) by
Pushing the rule engine to its limits with drools planner (parisjug 2010-11-09)Pushing the rule engine to its limits with drools planner (parisjug 2010-11-09)
Pushing the rule engine to its limits with drools planner (parisjug 2010-11-09)Geoffrey De Smet
6.1K views49 slides
ED conference presentation 2007 by
ED conference presentation 2007ED conference presentation 2007
ED conference presentation 2007Alexander Kolker
459 views29 slides
Drools Planner Chtijug 2010 by
Drools Planner Chtijug 2010Drools Planner Chtijug 2010
Drools Planner Chtijug 2010Nicolas Heron
430 views69 slides

More Related Content

Similar to Drools Planner webinar (2011-06-15): Drools Planner optimizes automated planning

Monte Carlo Simulation by
Monte Carlo SimulationMonte Carlo Simulation
Monte Carlo SimulationDeepti Singh
647 views51 slides
8 5 Scientific Notation by
8 5 Scientific Notation8 5 Scientific Notation
8 5 Scientific Notationtaco40
813 views26 slides
Estimation, Approximation and Standard form by
Estimation, Approximation and Standard formEstimation, Approximation and Standard form
Estimation, Approximation and Standard formNsomp
3.6K views14 slides
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN) by
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)Hansol Kang
391 views28 slides
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec... by
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...sugiuralab
43 views24 slides
Multiple intelligences approach to Number Systems by
Multiple intelligences approach to  Number SystemsMultiple intelligences approach to  Number Systems
Multiple intelligences approach to Number SystemsKatrin Becker
1.8K views62 slides

Similar to Drools Planner webinar (2011-06-15): Drools Planner optimizes automated planning(20)

Monte Carlo Simulation by Deepti Singh
Monte Carlo SimulationMonte Carlo Simulation
Monte Carlo Simulation
Deepti Singh647 views
8 5 Scientific Notation by taco40
8 5 Scientific Notation8 5 Scientific Notation
8 5 Scientific Notation
taco40813 views
Estimation, Approximation and Standard form by Nsomp
Estimation, Approximation and Standard formEstimation, Approximation and Standard form
Estimation, Approximation and Standard form
Nsomp3.6K views
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN) by Hansol Kang
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)
딥러닝 기초 - XOR 문제와 딥뉴럴넷(Basic of DL - XOR problem and DNN)
Hansol Kang391 views
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec... by sugiuralab
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTec...
sugiuralab43 views
Multiple intelligences approach to Number Systems by Katrin Becker
Multiple intelligences approach to  Number SystemsMultiple intelligences approach to  Number Systems
Multiple intelligences approach to Number Systems
Katrin Becker1.8K views
6.2 Jamie Zeitzer by momentumbrn
6.2 Jamie Zeitzer6.2 Jamie Zeitzer
6.2 Jamie Zeitzer
momentumbrn125 views
22. distribucion normal estandar a by Luis Miguel
22. distribucion normal estandar a22. distribucion normal estandar a
22. distribucion normal estandar a
Luis Miguel468 views
7 qc toools LEARN and KNOW how to BUILD IN EXCEL by rajesh1655
7 qc toools LEARN and KNOW how to BUILD IN EXCEL7 qc toools LEARN and KNOW how to BUILD IN EXCEL
7 qc toools LEARN and KNOW how to BUILD IN EXCEL
rajesh16557.2K views
Test suite minimization by Gaurav Saxena
Test suite minimizationTest suite minimization
Test suite minimization
Gaurav Saxena2.6K views
Balking and Reneging in the Queuing System by IOSR Journals
Balking and Reneging in the Queuing SystemBalking and Reneging in the Queuing System
Balking and Reneging in the Queuing System
IOSR Journals382 views
Sham Acupuncture Study by Tania Knapp
Sham Acupuncture StudySham Acupuncture Study
Sham Acupuncture Study
Tania Knapp2 views
Gotcha! Ruby things that will come back to bite you. by David Tollmyr
Gotcha! Ruby things that will come back to bite you.Gotcha! Ruby things that will come back to bite you.
Gotcha! Ruby things that will come back to bite you.
David Tollmyr1K views
Which transient when? - A utility function for transient follow-up scheduling by Tim Staley
Which transient when? - A utility function for transient follow-up schedulingWhich transient when? - A utility function for transient follow-up scheduling
Which transient when? - A utility function for transient follow-up scheduling
Tim Staley380 views
Computer Generated Items, Within-Template Variation, and the Impact on the Pa... by Quinn Lathrop
Computer Generated Items, Within-Template Variation, and the Impact on the Pa...Computer Generated Items, Within-Template Variation, and the Impact on the Pa...
Computer Generated Items, Within-Template Variation, and the Impact on the Pa...
Quinn Lathrop54 views
Metrics and Measurement Work Sampling Project by Divyang Choudhary
Metrics and Measurement Work Sampling ProjectMetrics and Measurement Work Sampling Project
Metrics and Measurement Work Sampling Project
Divyang Choudhary229 views

More from Geoffrey De Smet

Drools planner - 2012-10-23 IntelliFest 2012 by
Drools planner - 2012-10-23 IntelliFest 2012Drools planner - 2012-10-23 IntelliFest 2012
Drools planner - 2012-10-23 IntelliFest 2012Geoffrey De Smet
1.4K views83 slides
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev Conference by
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev ConferenceWhat is Drools, Guvnor and Planner? 2012 02-17 Brno Dev Conference
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev ConferenceGeoffrey De Smet
2.6K views87 slides
2012 02-04 fosdem 2012 - drools planner by
2012 02-04 fosdem 2012 - drools planner2012 02-04 fosdem 2012 - drools planner
2012 02-04 fosdem 2012 - drools plannerGeoffrey De Smet
1.5K views99 slides
JUDCon London 2011 - Bin packing with drools planner by example by
JUDCon London 2011 - Bin packing with drools planner by exampleJUDCon London 2011 - Bin packing with drools planner by example
JUDCon London 2011 - Bin packing with drools planner by exampleGeoffrey De Smet
2.8K views93 slides
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011 by
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011Geoffrey De Smet
5.1K views42 slides
Drools New York City workshop 2011 by
Drools New York City workshop 2011Drools New York City workshop 2011
Drools New York City workshop 2011Geoffrey De Smet
1.7K views111 slides

More from Geoffrey De Smet(19)

Drools planner - 2012-10-23 IntelliFest 2012 by Geoffrey De Smet
Drools planner - 2012-10-23 IntelliFest 2012Drools planner - 2012-10-23 IntelliFest 2012
Drools planner - 2012-10-23 IntelliFest 2012
Geoffrey De Smet1.4K views
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev Conference by Geoffrey De Smet
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev ConferenceWhat is Drools, Guvnor and Planner? 2012 02-17 Brno Dev Conference
What is Drools, Guvnor and Planner? 2012 02-17 Brno Dev Conference
Geoffrey De Smet2.6K views
2012 02-04 fosdem 2012 - drools planner by Geoffrey De Smet
2012 02-04 fosdem 2012 - drools planner2012 02-04 fosdem 2012 - drools planner
2012 02-04 fosdem 2012 - drools planner
Geoffrey De Smet1.5K views
JUDCon London 2011 - Bin packing with drools planner by example by Geoffrey De Smet
JUDCon London 2011 - Bin packing with drools planner by exampleJUDCon London 2011 - Bin packing with drools planner by example
JUDCon London 2011 - Bin packing with drools planner by example
Geoffrey De Smet2.8K views
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011 by Geoffrey De Smet
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011
Applying CEP Drools Fusion - Drools jBPM Bootcamps 2011
Geoffrey De Smet5.1K views
Drools New York City workshop 2011 by Geoffrey De Smet
Drools New York City workshop 2011Drools New York City workshop 2011
Drools New York City workshop 2011
Geoffrey De Smet1.7K views
2011-03-29 London - Decision tables in depth (Michael Anstis) by Geoffrey De Smet
2011-03-29 London - Decision tables in depth (Michael Anstis)2011-03-29 London - Decision tables in depth (Michael Anstis)
2011-03-29 London - Decision tables in depth (Michael Anstis)
Geoffrey De Smet4K views
2011-03-29 London - Why do I need the guvnor BRMS? by Geoffrey De Smet
2011-03-29 London - Why do I need the guvnor BRMS?2011-03-29 London - Why do I need the guvnor BRMS?
2011-03-29 London - Why do I need the guvnor BRMS?
Geoffrey De Smet5.4K views
2011-03-24 IDC - Adaptive and flexible processes (Mark Proctor) by Geoffrey De Smet
2011-03-24 IDC - Adaptive and flexible processes (Mark Proctor)2011-03-24 IDC - Adaptive and flexible processes (Mark Proctor)
2011-03-24 IDC - Adaptive and flexible processes (Mark Proctor)
Geoffrey De Smet1.1K views
Drooling for drools (JBoss webex) by Geoffrey De Smet
Drooling for drools (JBoss webex)Drooling for drools (JBoss webex)
Drooling for drools (JBoss webex)
Geoffrey De Smet1.8K views
Hybrid rule engines (rulesfest 2010) by Geoffrey De Smet
Hybrid rule engines (rulesfest 2010)Hybrid rule engines (rulesfest 2010)
Hybrid rule engines (rulesfest 2010)
Geoffrey De Smet1.2K views
st - demystifying complext event processing by Geoffrey De Smet
st - demystifying complext event processingst - demystifying complext event processing
st - demystifying complext event processing
Geoffrey De Smet1.2K views
Applying complex event processing (2010-10-11) by Geoffrey De Smet
Applying complex event processing (2010-10-11)Applying complex event processing (2010-10-11)
Applying complex event processing (2010-10-11)
Geoffrey De Smet1.8K views
Towards unified knowledge management platform (rulefest 2010) by Geoffrey De Smet
Towards unified knowledge management platform (rulefest 2010)Towards unified knowledge management platform (rulefest 2010)
Towards unified knowledge management platform (rulefest 2010)
Geoffrey De Smet1K views

Recently uploaded

Melek BEN MAHMOUD.pdf by
Melek BEN MAHMOUD.pdfMelek BEN MAHMOUD.pdf
Melek BEN MAHMOUD.pdfMelekBenMahmoud
14 views1 slide
Microsoft Power Platform.pptx by
Microsoft Power Platform.pptxMicrosoft Power Platform.pptx
Microsoft Power Platform.pptxUni Systems S.M.S.A.
53 views38 slides
Powerful Google developer tools for immediate impact! (2023-24) by
Powerful Google developer tools for immediate impact! (2023-24)Powerful Google developer tools for immediate impact! (2023-24)
Powerful Google developer tools for immediate impact! (2023-24)wesley chun
10 views38 slides
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc
11 views29 slides
SUPPLIER SOURCING.pptx by
SUPPLIER SOURCING.pptxSUPPLIER SOURCING.pptx
SUPPLIER SOURCING.pptxangelicacueva6
16 views1 slide
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...James Anderson
92 views32 slides

Recently uploaded(20)

Powerful Google developer tools for immediate impact! (2023-24) by wesley chun
Powerful Google developer tools for immediate impact! (2023-24)Powerful Google developer tools for immediate impact! (2023-24)
Powerful Google developer tools for immediate impact! (2023-24)
wesley chun10 views
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f... by TrustArc
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc Webinar - Managing Online Tracking Technology Vendors_ A Checklist f...
TrustArc11 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson92 views
Case Study Copenhagen Energy and Business Central.pdf by Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana16 views
Serverless computing with Google Cloud (2023-24) by wesley chun
Serverless computing with Google Cloud (2023-24)Serverless computing with Google Cloud (2023-24)
Serverless computing with Google Cloud (2023-24)
wesley chun11 views
STPI OctaNE CoE Brochure.pdf by madhurjyapb
STPI OctaNE CoE Brochure.pdfSTPI OctaNE CoE Brochure.pdf
STPI OctaNE CoE Brochure.pdf
madhurjyapb14 views
SAP Automation Using Bar Code and FIORI.pdf by Virendra Rai, PMP
SAP Automation Using Bar Code and FIORI.pdfSAP Automation Using Bar Code and FIORI.pdf
SAP Automation Using Bar Code and FIORI.pdf
Igniting Next Level Productivity with AI-Infused Data Integration Workflows by Safe Software
Igniting Next Level Productivity with AI-Infused Data Integration Workflows Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Safe Software280 views
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ... by Jasper Oosterveld
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...
ESPC 2023 - Protect and Govern your Sensitive Data with Microsoft Purview in ...

Drools Planner webinar (2011-06-15): Drools Planner optimizes automated planning

  • 1. Geoffrey De Smet Drools Planner optimizes automated planning
  • 2.
  • 3.
  • 6. Drools and jBPM Platform Overview
  • 7. Business Logic Integration Business Logic Integration Platform Rule engine Workflow Complex event processing (CEP) Business Rule Management System (BRMS) Automated planning
  • 8. Use cases What are planning problems?
  • 9.  
  • 10.  
  • 11.  
  • 12.  
  • 13.  
  • 14. Hard constraint implementation // a nurse can only work one shift per day rule "oneShiftPerDay" when $left : EmployeeAssignment ( $employee : employee, $shiftDate : shiftDate, $leftId : id ) $right : EmployeeAssignment ( employee == $employee , shiftDate == $shiftDate , id > $leftId ) then // Lower the hard score with a weight ... end
  • 15.  
  • 16. Soft constraint implementation rule "dayOffRequest" when $dayOffRequest : DayOffRequest ( $employee : employee , $shiftDate : shiftDate , $weight : weight ) $employeeAssignment : EmployeeAssignment ( employee == $employee , shiftDate == $shiftDate ) then // Lower the soft score with the weight $weight ... end Object orientated Readable by domain experts Fast and scalable: Indexes, ReteOO, ... Java methods usable Isolated
  • 18. Hospital bed planning constraints Hard constraints No 2 patients in same bed in same night Room gender limitation Department minimum or maximum age Patient requires specific room equipment(s) Soft constraints Patient prefers maximum room size Department specialization Room specialization Patient prefers specific room equipment(s)
  • 19. Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) Numbers from a real dataset
  • 20. Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > humans? 7 000 000 000 humans Source: NASA (wikipedia)
  • 21. Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > minimum atoms in the observable universe? 10^80 Source: NASA and ESA (wikipedia)
  • 22. Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) > atoms in the universe if every atom is a universe of atoms? (10^80)^80 = 10^6400 Source: NASA and ESA (wikipedia)
  • 23. Needle in a haystack How many possible solutions? 310 beds in 105 rooms in 4 departments 84 nights 2750 patients (admissions) A little over 10^6851
  • 24. Do the math 1 patient 310 beds 310 ways to schedule 1 patient 2 patients 310 * 310 = 96 100 3 patients 310 * 310 * 310 = 29 791 000 2750 patients 310 * 310 * ... * 310 310^2750 = a little over 10^6851
  • 25. A little over 10^6851 17565400009613647714189309909847019528176031676612802408947467896773536824694320 25377105894429532838896584732142182052033826938421876324335318655320329177415624 34019697177044291997231955740197313574392215860109009013187756616189881491857442 89903563474940721372704649669447515706252843900344472960295273324597346780837674 88697227533874455473777198677633776549677388281039595554235192833141437843928340 51328923587442242154997922875864744269141114570273352582691671031946927906652177 66902628732489519488236496931246157419949856522543510386164584826962224171420152 25565850232385350464349705325292272792440640617915932702527496869105242581827012 17106705526418375034351087944819610624220027292887379804041858752339124281780095 58605680683578864680145557998942327371019832139824665975180911386722774004539981 34278552385168663637443267160148549642311093017595330858041676796683206809536596 46569395830894437089458443238882278162963824641222099807169369905394994720275907 38400791514217875461942733015467480308665074008529461146577114465977072581447925 88212290682716057000722801705649967418814850790871678616492253646749058716362694 56894529270615321506374546152336416456127910274106084164763806424690851439804640 67453971429400369608313929289399595696359958354101721624055729520838609453039985 59272628937624385694142906376790391997713872443251360270344814604597056658507680 95764769840369232215532708782795742398666571567290512950859701002128560257873450 34666683590797377984104207041334053480226788236770435009014979334517769826461063 28117889455452701285996652060625309878869936718080636701237289582496335799276496 97991233610444564616874109815224930933169104649370892996558804470140748763978122 10684054337706530175130912335567383560436635091489083375525519539844805718811296 85807650768511219249940528633766810704609502399987122465510787717422067936021241 05730014911043812216621387647568988345883813404108921585448372002290085339308167 94663631470201197595487045022087615873490295940409113638894083753062801416644858
  • 26. A little over 10^6851 70757942487218045035508810158461046502812782292385633846174494690914238485407798 37976573852840248463244968564240141089763763217269495446550923090738150172870668 68402081731644263484686141346509306107283418762923467113106773326485539514229919 89751468506508069513397904821612697383659788320905691994864296149528670873271380 18006650770249052559419638332728972636228024127885657959189574420249964658137384 98299648678707389648424263725804209284739296524664530660893065815727451390562561 81505240205578741292314133858985615181677968313683876880079649763914095651402272 04777610845144506688836696844897279181666903094579081039689572524839918882203466 75664835223276850061950801785251074912552450542389767056205475823297598574505575 83834141364747838395082871684183199560673441708538602779816347949276957201268066 62737283137076807355893467941027682428304918329951886951690865417997171855081020 26756284570976172802328890960381286165431282000890478132235199027141966946398442 73986565523012106816309974964021700560537928432528631741787455155275823033005847 63710721074772137206636934675415209083984961138990816735390734923436827652228741 07306375553429574524282669680025732278499336914490634182865013110363140489605282 49465982665132492491072491788618403253474529440348798670244615185355092357283764 93638760707623418191667075526942154653033728468983877312232305317179427144435853 36388068489698718841685828476130163980130066330161405037431756112554842734192914 35502775849577615159921009571496639402549077872124227731739936370100132762333353 47390808021571900433548715701062002052376364885669272869945947160341077659253581 65207459958613365778774312937767961242646970494187951860105460569752264242274554 46011031581123438684685838655333776830823720356749120051129394691394743488410658 61354353779545576065515784960221442891508405618131446589507592449826384604047449 56226545521579338675725427458383708893912437023584592443865610814799055455700844 91443709439642235090455604548030317754849613813010298858282615659336373785985294
  • 27. A little over 10^6851 58667337266411706925088329158776619790296442059252886388879455197093987039774900 08729398961010317200010000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000
  • 28. A little over 10^6851 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000 The search space is big! Compare with WWW size 22 020 000 000 pages Each possible solution 2750 patients scheduled into 310 beds Still need to calculate the score! => Drools Expert
  • 29.
  • 31.
  • 32.
  • 33. Brute force algorithm Useless with a real world n
  • 34. A huge performance gain because of Drools Expert Critical for ALL of your constraints! No extra code thanks to Drools Expert
  • 35. Branch and bound algorithm Useless with a real world n
  • 36.
  • 37.
  • 38. More time = better score
  • 40. Greedy algorithm First fit decreasing Human planner are worse than this algorithm and take more time. (*) (*) with a real world n
  • 41.
  • 42. Give 2 queens each others rows
  • 43. ... Score = -6 Score = -4
  • 45.
  • 46.
  • 47. 2) Simple local search
  • 48. 3) Stuck in local optimum! Source: Wikipedia Score function
  • 49.
  • 50. Great deluge, late acceptance, …
  • 52.
  • 55.
  • 57.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68. Benchmarker class Real output from the Benchmarker class
  • 69. CPU power VS algorithms more CPU power better algorithm Real output from the Benchmarker class
  • 70. Future Simpler, faster and more powerful
  • 72.
  • 74.
  • 76.
  • 77. Adding constraints is easy and scalable
  • 80.
  • 81.