From Linked Data to Tightly Integrated Data

Gerard de Melo
Gerard de MeloAssistant Professor at Rutgers University
From Linked Data to 
Tightly Integrated Data 
From Linked Data to 
Tightly Integrated Data 
May 2014 
Gerard de Melo 
May 2014 
Gerard de Melo 
Tsinghua University, Beijing 
Tsinghua University, Beijing
25 Years of the World Wide Web: 
1989−2014 
Tim Berners-Lee 
http://geekcom.wordpress.com/2009/03/19/ 
Gerard de Melo
25 Years of the World Wide Web: 
1989−2014 
Tim Berners-Lee http://geekcom.wordpress.com/2009/03/19/ 
Documents for 
human viewing 
Gerard de Melo
FFrroomm TTeexxtt ttoo SSttrruuccttuurreedd DDaattaa 
October 14, 2002, 4:00 a.m. PT 
For years, Microsoft Corporation CEO Bill Gates 
railed against the economic philosophy of open-source 
software with Orwellian fervor, denouncing 
its communal licensing as a "cancer" that stifled 
technological innovation. 
Today, Microsoft claims to "love" the open-source 
concept, by which software code is made public to 
encourage improvement and development by 
outside programmers. Gates himself says Microsoft 
will gladly disclose its crown jewels--the coveted 
code behind the Windows operating system--to 
select customers. 
"We can be open source. We love the concept of 
shared source," said Bill Veghte, a Microsoft VP. 
"That's a super-important shift for us in terms of 
code access.“ 
Richard Stallman, founder of the Free Software 
Foundation, countered saying… 
IE 
Source: Marko Grobelnik, 
Dunja Mladenic. KDD 2007. 
NAME TITLE ORGANIZATION 
Bill Gates CEO Microsoft 
Bill Veghte VP Microsoft 
Richard Stallman founder Free Soft.. 
Gerard de Melo
TThhee SSeemmaannttiicc WWeebb 
Tim Berners-Lee 
http://geekcom.wordpress.com/2009/03/19/ 
col-league 
born in Frankfurt 
described 
by 
created by 
Publish data 
in the right form 
right from the start 
created 
by 
Gerard de Melo
TThhee SSeemmaannttiicc WWeebb 
Assign URIs not just to 
Documents, 
also to People, etc. 
http://purl.org/dc/ 
elements/1.1./creator 
http://dblp.l3s.de/d2r/page/ http://www.demelo.org/gdm/#GDM 
publications/conf/cikm/MeloW09 
Assign URIs to 
Predicates (Edge Types) 
created by 
Gerard de Melo
Challenge: 
Simplify Publishing 
Gerard de Melo
Challenge: 
Simplify Publishing 
http://www.gauson.com/blog/2007/12/09/minimal-template-for-blogspot/ 
Gerard de Melo
Challenge: 
Simplify Publishing 
Freebase: 
Better UI but 
not universal 
Gerard de Melo
BBiigg KKnnoowwlleeddggee GGrraapphhss 
Gerard de Melo
Big Knowledge Graphs 
YAGO2. 
Hoffart et al. 
WWW 2011. 
Gerard de Melo
Lexical Knowledge Bases 
Gerard de Melo
Etymological Wordnet 
LREC 2014 
Poster Session P17 
16:45-18:05 
Also 
Christian Chiarcos 
today 
Gerard de Melo
LLeexxiiccaall IInntteennssiittyy OOrrddeerriinnggss 
ookkaayy 
< 
ggoooodd 
< 
ggrreeaatt 
< 
ssuuppeerrbb 
weak 
strong 
de Melo & Bansal 
Transactions 
of the ACL, 
2013. 
Gerard de Melo
Metaphors: ICSI MetaNet Project 
Gerard de Melo
WWeebbCChhiilldd:: CCoommmmoonn--SSeennssee 
Common- 
Sense 
Relations, 
Properties, 
Comparisons 
Tandon et al. 
WSDM 2014. 
Tandon et al. 
AAAI 2014. 
Tandon et al. 
AAAI 2011. 
Gerard de Melo
LLiinnkkeedd DDaattaa iinn UUssee 
Input: 
Keywords, the World's Data 
Output: 
Address User's 
Needs 
Gerard de Melo
Linked Data In Use 
Gerard de Melo
Linked Data In Use 
used in IBM's Jeopardy!-winning 
Watson system 
Gerard de Melo
TThhee PPllaann 
Linked Data 
Really Linked Data 
Integrated Data 
Tightly Integrated Data
TThhee PPllaann 
Linked Data 
Really Linked Data 
Integrated Data 
Tightly Integrated Data
RReeaallllyy LLiinnkkeedd DDaattaa 
Just converting to 
RDF is trivial 
Gerard de Melo
RReeaallllyy LLiinnkkeedd DDaattaa 
use entities 
instead of 
literals where 
possible 
author 
BBooookk 2233 ““FFrraannzz KKaaffkkaa”” 
Gerard de Melo
RReeaallllyy LLiinnkkeedd DDaattaa 
use entities 
instead of 
literals where 
possible 
BBooookk 2233 
““FFrraannzz KKaaffkkaa”” 
author 
AAuutthhoorr 1144 
name 
born in 
PPrraagguuee 
Gerard de Melo
RReeaallllyy LLiinnkkeedd DDaattaa 
use entities 
instead of 
literals where 
possible 
language 
PPeerrffoorrmmaannccee 11 ““eenn”” 
language 
PPeerrffoorrmmaannccee 22 ““EEnngglliisshh”” 
language 
PPeerrffoorrmmaannccee 33 ““eennggll..”” 
Gerard de Melo
RReeaallllyy LLiinnkkeedd DDaattaa 
use entities 
instead of 
literals where 
possible 
PPeerrffoorrmmaannccee 11 language 
PPeerrffoorrmmaannccee 22 language EEnngglliisshh 
PPeerrffoorrmmaannccee 33 language 
http://lexvo.org/id/iso639-3/eng 
Gerard de Melo
VVooccaabbuullaarryy // OOnnttoollooggyy RRee--UUssee 
http://lov.okfn.org/ 
Gerard de Melo
VVooccaabbuullaarryy // OOnnttoollooggyy RRee--UUssee 
Gerard de Melo
VVooccaabbuullaarryy // OOnnttoollooggyy RRee--UUssee 
Gerard de Melo
LLiinnkkeedd DDaattaa CClloouudd 
Gerard de Melo
LLiinnkkeedd DDaattaa CClloouudd 
Gerard de Melo
IIddeennttiiffiieerrss aanndd CCrroossss--LLiinnkkaaggee 
Arguably more important than RDF 
as a format 
Example: Google Knowledge Graph 
Buy into 
rich existing 
eco-systems 
Gerard de Melo
Focal Point: WordNet 
UWN (CIKM 2009): 
over 1,000,000 words in over 100 languages 
Gerard de Melo
UUWWNN//MMEENNTTAA:: UUnniivveerrssaall WWoorrddNNeett 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
Lexvo.org 
Cyrllic 
(Script) 
UUkkrraaiinnee 
owl:sameAs 
UUkkrraaiinnee 
GeoNames 
UUUUkkkkrrrraaaaiiiinnnniiiiaaaannnn 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
Lexvo.org 
Cyrllic 
(Script) 
UUkkrraaiinnee 
UUUUkkkkrrrraaaaiiiinnnniiiiaaaannnn 
My Resource 
UUkkrraaiinniiaann 
Lexvo.org API 
Identifiers 
.getLanguageURIforISO639P1("uk") 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
“car”@en l:means sumo:Automobile 
lexvo:term/eng/car l:means sumo:Automobile 
Lexvo.org API 
Identifiers 
RDF 
.getTermURI("car", "eng") 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
Gerard de Melo
Focal Point: Lexvo.org 
SSeemmaannttiicc WWeebb 
JJoouurrnnaall 22001144 
Gerard de Melo
FFooccaall PPooiinntt:: LLeexxvvoo..oorrgg 
LLeexxvvoo..oorrgg 
Roget's 
Thesaurus 
WordNet 
Evocation Links 
Etymological 
WordNet 
PropBank 
lexicon 
NomBank 
lexicon 
MPQA Subjectivity 
Lexicon 
AFINN 
Affective Lexicon 
CMU 
Pronunciation 
Dictionary 
Gerard de Melo
LLiinnkkeedd EEnnttiittiieess 
Source: Gerhard Weikum. For a few Triples more. 
Gerard de Melo
LLiinnkkeedd EEnnttiittiieess 
Gerard de Melo
LINDA: Creating Links 
Gerard de Melo
LINDA: Creating Links 
LINDA: 
Böhm et al. 
CIKM 2012 
Gerard de Melo
LINDA: Creating Links 
LINDA: 
Böhm et al. 
CIKM 2012 
Gerard de Melo
LINDA: Creating Links 
LINDA: 
Böhm et al. 
CIKM 2012 
Gerard de Melo
LLLLIIIINNNNDDDDAAAA:::: CCCCrrrreeeeaaaattttiiiinnnngggg LLLLiiiinnnnkkkkssss 
LINDA: 
Böhm et al. 
CIKM 2012 
Scale to Billion Triples Challenge Dataset 
despite dependencies 
Gerard de Melo
Lexvo.org 
SSaammeeAAss LLiinnkkss 
UUkkrraaiinnee 
owl:sameAs 
UUkkrraaiinnee 
GeoNames 
Leibnizian Identity 
For all x: 
x=x 
For all x, y, p: 
x=y => p(x)=p(y) 
Gerard de Melo
IIddeennttiittyy vvss.. NNeeaarr--IIddeennttiittyy 
Official 
Standard 
& Leibniz 
Automatic 
linkers & 
sameas.org 
EEiinnsstteeiinn 
owl:sameAs 
Einstein's 
Miracle Year 
Gerard de Melo
Merging Lexical Resources 
ACL 2010 
AAAI 2013 
Gerard de Melo
Merging Lexical Resources 
ACL 2010 
AAAI 2013 
Gerard de Melo
IIddeennttiittyy CCoonnssttrraaiinnttss 
ddbbppeeddiiaa:: PPaauullaa 
IIddeeaa:: 
Exploit 
Dataset-specific 
Unique Names 
Assumptions 
ddbbppeeddiiaa:: PPaauull 
dbpedia: 
Paulie (redirect) 
musicbrainz: 
Paulie 
ddbbllpp:: PPaauullaa 
ffrreeeebbaassee:: PPaauull 
Gerard de Melo
IIddeennttiittyy CCoonnssttrraaiinnttss 
ddbbppeeddiiaa:: PPaauullaa 
IIddeeaa:: 
Exploit 
Dataset-specific 
Unique Names 
Assumptions 
ddbbppeeddiiaa:: PPaauull 
musicbrainz: 
Paulie 
ddbbllpp:: PPaauullaa 
ffrreeeebbaassee:: PPaauull 
dbpedia: 
Paulie (redirect) 
Gerard de Melo
IIddeennttiittyy CCoonnssttrraaiinnttss 
ddbbppeeddiiaa:: PPaauullaa 
ffrreeeebbaassee:: PPaauull ddbbllpp:: PPaauullaa 
musicbrainz: 
Paulie 
ddbbppeeddiiaa:: PPaauull 
dbpedia: 
Paulie (redirect) 
UUssee sseett--bbaasseedd ffoorrmmaalliissmm ttoo 
aaccccoouunntt ffoorr eexxcceeppttiioonnss ++ 
ttoo aavvooiidd qquuaaddrraattiicc nnuummbbeerr ooff 
ppaaiirrwwiissee ccoonnssttrraaiinnttss 
Gerard de Melo
IIddeennttiittyy CCoonnssttrraaiinnttss 
ddbbppeeddiiaa:: PPaauull 
2 2 
ffrreeeebbaassee:: PPaauull ddbbllpp:: PPaauullaa 
musicbrainz: 
AAAAdddddddd eeeeddddggggeeee wwwweeeeiiiigggghhhhttttssss 
Paulie 
1 
1 
1 
1 
dbpedia: 
Paulie (redirect) 
ddbbppeeddiiaa:: PPaauullaa 
GGooaall:: CCoonnssiisstteennccyy 
mmiinniimmiizziinngg wweeiigghhtteedd 
eeddggee ddeelleettiioonnss 
Gerard de Melo
AAllggoorriitthhmm 
See Paper for 
details, incl. relationship to 
Hungarian Algorithm and 
Graph Cuts 
Capture separation between 
nodes, which requires 
edge deletions along all paths 
Gerard de Melo
AAllggoorriitthhmm 
ddbbppeeddiiaa:: PPaauull 
2 2 
dbpedia: 
Paulie (redirect) 
musicbrainz: 
Paulie 
LLeeiigghhttoonn && RRaaoo ssttyyllee 
RReeggiioonn GGrroowwiinngg 
ddbbppeeddiiaa:: PPaauullaa 
ddbbllpp:: PPaauullaa 
ffrreeeebbaassee:: PPaauull 
1 
1 
1 
1 
Gerard de Melo
AAllggoorriitthhmm 
ddbbppeeddiiaa:: PPaauull 
2 2 
dbpedia: 
Paulie (redirect) 
musicbrainz: 
Paulie 
LLeeiigghhttoonn && RRaaoo ssttyyllee 
RReeggiioonn GGrroowwiinngg 
ddbbppeeddiiaa:: PPaauullaa 
ddbbllpp:: PPaauullaa 
ffrreeeebbaassee:: PPaauull 
1 
1 
1 
1 
Gerard de Melo
EExxppeerriimmeennttss 
BBTTCC:: 
Large Linked Data Web crawl, 20GB gzipped 
ssaammeeaass..oorrgg:: 
Most well-known collections of sameAs links, 
aggregated from various Linked Data sources 
Gerard de Melo
IIddeennttiittyy CCoonnssttrraaiinnttss 
Gerard de Melo
EExxppeerriimmeennttss 
>>550000,,000000 nnooddee ppaaiirrss,, 
bbuutt aallggoorriitthhmm rreemmoovveess 
oonnllyy 228800,,000000 eeddggeess 
Gerard de Melo
IIddeennttiittyy LLiinnkkss 
Must distinguish identity from 
near-identity 
Can automatically identify 
500,000 inconsistent URI pairs 
Fix using LP Graph Algorithm 
Use more specific properties! 
lvont:strictlySameAs (Lexvo.org) 
skos:closeMatch 
etc. 
Gerard de Melo
QQuueessttiioonnss?? 
Image: Question Answering over Linked Data Workshop 
Gerard de Melo
TThhee PPllaann 
Linked Data 
Really Linked Data 
Integrated Data 
Tightly Integrated Data
Taxonomic Links 
a user wants 
a list of 
„Art Schools in 
Europe“ 
Gerard de Melo
Multilingual Taxonomies 
a Swedish user 
wants 
a list of 
„Konstskolor i 
Europa“ 
Gerard de Melo
MENTA 
220000++ 200+ WWiikkiippeeddiiaa eeddiittiioonnss 
WWoorrddNNeett 
EEttcc.. 
Gerard de Melo
Predict Individual 
Identity Links: 
WordNet-Wikipedia 
Article-Redirect 
Article-Category 
etc. 
MENTA 
Gerard de Melo
MENTA 
Predict Individual 
Taxonomic Links: 
Article → Category 
Category → WordNet
MENTA 
Gerard de Melo
Taxonomic Links: 
MENTA 
Gerard de Melo
Taxonomic Links: 
MENTA 
Use Identity Constraint 
Algorithm to form 
equivalence classes 
Markov Chain Random 
Walk with Restarts 
to Rank Parents 
Gerard de Melo
Taxonomic Links: 
MENTA 
Gerard de Melo
UWN/MENTA 
CCIIKKMM 22001100 
BBeesstt PPaappeerr AAwwaarrdd 
Gerard de Melo
MENTA: Multilingual 
Entity Taxonomy 
UWN/MENTA 
(de Melo & 
Weikum 2010) 
● multilingual 
extension of 
WordNet, with 
800,000 words in 
250 languages 
● 4,8 million 
instances/classes 
from multilingual 
Wikipedia editions 
Gerard de Melo
UWN/MENTA 
multilingual extension of WordNet for 
word senses and taxonomical information over 200 languages 
Gerard de Melo
QQuueessttiioonnss?? 
Image: Question Answering over Linked Data Workshop 
Gerard de Melo
TThhee PPllaann 
Linked Data 
Really Linked Data 
Integrated Data 
Tightly Integrated Data
CChhaalllleennggee:: LLoocckkeedd AAwwaayy DDaattaa 
Hard to run 
advanced algorithms 
over a SPARQL 
interface 
Many sites don't 
provide downloads. 
Gerard de Melo
CChhaalllleennggee:: LLoosstt DDaattaa 
http://sparqles.okfn.org/ 
Servers offline 
Poor archiving 
Dumps need to 
be archived and 
integrated. 
Gerard de Melo
CChhaalllleennggee:: UUppddaatteess 
Need to be able to 
update when data 
changes 
Need algorithmic 
solutions, not 
one-time process. 
YAGO2s: Biega et al. 2013 
Gerard de Melo
Requirement: 
Integration Algorithm Pipelines 
Gerard de Melo 
Input: 
Various Data 
Output: 
Tightly Integrated 
Data
LLeexxvvoo..oorrgg 
SSeemmaannttiicc WWeebb 
JJoouurrnnaall 22001144 
Gerard de Melo
LLeexxvvoo..oorrgg 
Gerard de Melo
LLeexxvvoo..oorrgg
LLeexxvvoo..oorrgg
LLeexxvvoo..oorrgg 
SSeemmaannttiicc WWeebb 
JJoouurrnnaall 22001144 
Gerard de Melo
KKnnoowwlleeddggee GGrraapphhss 
Most large-scale knowledge bases have 
ground facts only 
bornIn(Einstein,Ulm) 
acquired(Microsoft,Powerset) 
But language is much more expressive 
● ● All humans are mortal. 
● ● At least three but not more than 10 people 
know this secret. 
● ● Three years ago, most people believed that 
Microsoft would buy Yahoo within months. 
Gerard de Melo
CChhaalllleennggee:: TTiimmee 
TTeemmppoorraall ssccooppee mmiissssiinngg 
Source: Gerhard Weikum. For a few Triples more. 
Gerard de Melo
OOWWLL,, RRDDFFSS,, DDeessccrriippttiioonn LLooggiiccss 
WebProtégé 
http://protege.stanford.edu/ 
Limit expressivity 
to get decidability. 
Focus on class 
hierarchies 
and property 
axioms. 
Cannot create new rules 
e.g. to model 
“grandparent”, “uncle”, 
“legal adult”! 
Gerard de Melo
RReeaassoonniinngg 
Humans cannot act before being born 
(or, actually, before being conceived) 
(=> 
(and 
(human ?HUMAN) 
(birthdate ?HUMAN ?T) 
(agent ?PROCESS ?HUMAN)) 
(beforeOrEqual 
(daysBefore (BeginFn ?T) 365) 
(BeginFn (WhenFn ?PROCESS))))
RReeaassoonniinngg:: SSPPAASSSS--XXDDBB 
Gerard de Melo
Search Interfaces 
“Which companies were created during the 
last century in Silicon Valley ?” 
YAGO2: 
WWW 2011 
Best Demo Award 
Gerard de Melo
Common-Sense Inference 
Gerard de Melo 
I found the following restaurant 
near your current location: 
La Dolce Vita Pizza. 2318 Columbus Ave. 
I'd rather have something 
healthier 
Tandon et al. 
AAAI 2014
Conclusion 
Really Linked Data 
► Shared Identifiers 
► Proper Interlinking 
Integrated Data 
► Taxonomical Integration 
Tightly Integrated Data 
► Processing Pipelines 
► Towards Common-Sense 
Inference 
www.demelo.org 
gdm@demelo.org 
Gerard de Melo
1 of 97

Recommended

Linked Data and Tools by
Linked Data and ToolsLinked Data and Tools
Linked Data and ToolsPedro Szekely
1.1K views65 slides
Profiling Web Archives IIPC GA 2015 by
Profiling Web Archives IIPC GA 2015Profiling Web Archives IIPC GA 2015
Profiling Web Archives IIPC GA 2015Sawood Alam
2.1K views45 slides
Folclore chiapas by
Folclore chiapasFolclore chiapas
Folclore chiapasgsf89
15 views6 slides
Windows 11 pro 2019 by
Windows 11 pro 2019 Windows 11 pro 2019
Windows 11 pro 2019 markuspeters7
506 views27 slides
Learning Multilingual Semantics from Big Data on the Web by
Learning Multilingual Semantics from Big Data on the WebLearning Multilingual Semantics from Big Data on the Web
Learning Multilingual Semantics from Big Data on the WebGerard de Melo
1.2K views156 slides
Genetica by
GeneticaGenetica
Geneticaleoplan2
628 views5 slides

More Related Content

Similar to From Linked Data to Tightly Integrated Data

From Big Data to Valuable Knowledge by
From Big Data to Valuable KnowledgeFrom Big Data to Valuable Knowledge
From Big Data to Valuable KnowledgeGerard de Melo
1K views44 slides
Information Extraction and Linked Data Cloud by
Information Extraction and Linked Data CloudInformation Extraction and Linked Data Cloud
Information Extraction and Linked Data CloudDhaval Thakker
1.3K views28 slides
C 2 by
C 2C 2
C 2Les Davy
345 views34 slides
(Re-) Discovering Lost Web Pages by
(Re-) Discovering Lost Web Pages(Re-) Discovering Lost Web Pages
(Re-) Discovering Lost Web PagesMichael Nelson
960 views49 slides
Training Week: Create a Knowledge Graph: A Simple ML Approach by
Training Week: Create a Knowledge Graph: A Simple ML Approach Training Week: Create a Knowledge Graph: A Simple ML Approach
Training Week: Create a Knowledge Graph: A Simple ML Approach Neo4j
2.7K views48 slides
Semweb at the BBC by
Semweb at the BBCSemweb at the BBC
Semweb at the BBCfantasticlife
2.4K views76 slides

Similar to From Linked Data to Tightly Integrated Data(20)

From Big Data to Valuable Knowledge by Gerard de Melo
From Big Data to Valuable KnowledgeFrom Big Data to Valuable Knowledge
From Big Data to Valuable Knowledge
Gerard de Melo1K views
Information Extraction and Linked Data Cloud by Dhaval Thakker
Information Extraction and Linked Data CloudInformation Extraction and Linked Data Cloud
Information Extraction and Linked Data Cloud
Dhaval Thakker1.3K views
(Re-) Discovering Lost Web Pages by Michael Nelson
(Re-) Discovering Lost Web Pages(Re-) Discovering Lost Web Pages
(Re-) Discovering Lost Web Pages
Michael Nelson960 views
Training Week: Create a Knowledge Graph: A Simple ML Approach by Neo4j
Training Week: Create a Knowledge Graph: A Simple ML Approach Training Week: Create a Knowledge Graph: A Simple ML Approach
Training Week: Create a Knowledge Graph: A Simple ML Approach
Neo4j2.7K views
Disadvantages Of Google File System by Stacey Wilson
Disadvantages Of Google File SystemDisadvantages Of Google File System
Disadvantages Of Google File System
Stacey Wilson3 views
C 2 by Les Davy
C 2C 2
C 2
Les Davy1.8K views
WTF is Semantic Web? by milesw
WTF is Semantic Web?WTF is Semantic Web?
WTF is Semantic Web?
milesw598 views
Convolutional Neural Networks and Natural Language Processing by Thomas Delteil
Convolutional Neural Networks and Natural Language ProcessingConvolutional Neural Networks and Natural Language Processing
Convolutional Neural Networks and Natural Language Processing
Thomas Delteil1.9K views
Combining Multimedia and Semantics (LACNEM2010) by Oscar Corcho
Combining Multimedia and Semantics (LACNEM2010)Combining Multimedia and Semantics (LACNEM2010)
Combining Multimedia and Semantics (LACNEM2010)
Oscar Corcho822 views
Defcon 17 Tactical Fingerprinting using Foca by Chema Alonso
Defcon 17   Tactical Fingerprinting using FocaDefcon 17   Tactical Fingerprinting using Foca
Defcon 17 Tactical Fingerprinting using Foca
Chema Alonso4K views
Metadata Security: MetaShield Protector by Chema Alonso
Metadata Security: MetaShield ProtectorMetadata Security: MetaShield Protector
Metadata Security: MetaShield Protector
Chema Alonso992 views
Open (P2P) Design @ Pixelversity, Helsinki (16/09/2011) by Massimo Menichinelli
Open (P2P) Design @ Pixelversity, Helsinki (16/09/2011)Open (P2P) Design @ Pixelversity, Helsinki (16/09/2011)
Open (P2P) Design @ Pixelversity, Helsinki (16/09/2011)

More from Gerard de Melo

SEMAC Graph Node Embeddings for Link Prediction by
SEMAC Graph Node Embeddings for Link PredictionSEMAC Graph Node Embeddings for Link Prediction
SEMAC Graph Node Embeddings for Link PredictionGerard de Melo
932 views39 slides
How to Manage your Research by
How to Manage your ResearchHow to Manage your Research
How to Manage your ResearchGerard de Melo
2.3K views142 slides
Knowlywood: Mining Activity Knowledge from Hollywood Narratives by
Knowlywood: Mining Activity Knowledge from Hollywood NarrativesKnowlywood: Mining Activity Knowledge from Hollywood Narratives
Knowlywood: Mining Activity Knowledge from Hollywood NarrativesGerard de Melo
848 views28 slides
Scalable Learning Technologies for Big Data Mining by
Scalable Learning Technologies for Big Data MiningScalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data MiningGerard de Melo
1.7K views152 slides
Searching the Web of Data (Tutorial) by
Searching the Web of Data (Tutorial)Searching the Web of Data (Tutorial)
Searching the Web of Data (Tutorial)Gerard de Melo
1.9K views226 slides
Information Extraction from Web-Scale N-Gram Data by
Information Extraction from Web-Scale N-Gram DataInformation Extraction from Web-Scale N-Gram Data
Information Extraction from Web-Scale N-Gram DataGerard de Melo
1.8K views75 slides

More from Gerard de Melo(13)

SEMAC Graph Node Embeddings for Link Prediction by Gerard de Melo
SEMAC Graph Node Embeddings for Link PredictionSEMAC Graph Node Embeddings for Link Prediction
SEMAC Graph Node Embeddings for Link Prediction
Gerard de Melo932 views
How to Manage your Research by Gerard de Melo
How to Manage your ResearchHow to Manage your Research
How to Manage your Research
Gerard de Melo2.3K views
Knowlywood: Mining Activity Knowledge from Hollywood Narratives by Gerard de Melo
Knowlywood: Mining Activity Knowledge from Hollywood NarrativesKnowlywood: Mining Activity Knowledge from Hollywood Narratives
Knowlywood: Mining Activity Knowledge from Hollywood Narratives
Gerard de Melo848 views
Scalable Learning Technologies for Big Data Mining by Gerard de Melo
Scalable Learning Technologies for Big Data MiningScalable Learning Technologies for Big Data Mining
Scalable Learning Technologies for Big Data Mining
Gerard de Melo1.7K views
Searching the Web of Data (Tutorial) by Gerard de Melo
Searching the Web of Data (Tutorial)Searching the Web of Data (Tutorial)
Searching the Web of Data (Tutorial)
Gerard de Melo1.9K views
Information Extraction from Web-Scale N-Gram Data by Gerard de Melo
Information Extraction from Web-Scale N-Gram DataInformation Extraction from Web-Scale N-Gram Data
Information Extraction from Web-Scale N-Gram Data
Gerard de Melo1.8K views
UWN: A Large Multilingual Lexical Knowledge Base by Gerard de Melo
UWN: A Large Multilingual Lexical Knowledge BaseUWN: A Large Multilingual Lexical Knowledge Base
UWN: A Large Multilingual Lexical Knowledge Base
Gerard de Melo1.1K views
Multilingual Text Classification using Ontologies by Gerard de Melo
Multilingual Text Classification using OntologiesMultilingual Text Classification using Ontologies
Multilingual Text Classification using Ontologies
Gerard de Melo1.4K views
Extracting Sense-Disambiguated Example Sentences From Parallel Corpora by Gerard de Melo
Extracting Sense-Disambiguated Example Sentences From Parallel CorporaExtracting Sense-Disambiguated Example Sentences From Parallel Corpora
Extracting Sense-Disambiguated Example Sentences From Parallel Corpora
Gerard de Melo1.7K views
Towards a Universal Wordnet by Learning from Combined Evidence by Gerard de Melo
Towards a Universal Wordnet by Learning from Combined EvidenceTowards a Universal Wordnet by Learning from Combined Evidence
Towards a Universal Wordnet by Learning from Combined Evidence
Gerard de Melo1.8K views
Not Quite the Same: Identity Constraints for the Web of Linked Data by Gerard de Melo
Not Quite the Same: Identity Constraints for the Web of Linked DataNot Quite the Same: Identity Constraints for the Web of Linked Data
Not Quite the Same: Identity Constraints for the Web of Linked Data
Gerard de Melo989 views
Good, Great, Excellent: Global Inference of Semantic Intensities by Gerard de Melo
Good, Great, Excellent: Global Inference of Semantic IntensitiesGood, Great, Excellent: Global Inference of Semantic Intensities
Good, Great, Excellent: Global Inference of Semantic Intensities
Gerard de Melo2K views
YAGO-SUMO: Integrating YAGO into the Suggested Upper Merged Ontology by Gerard de Melo
YAGO-SUMO: Integrating YAGO into the Suggested Upper Merged OntologyYAGO-SUMO: Integrating YAGO into the Suggested Upper Merged Ontology
YAGO-SUMO: Integrating YAGO into the Suggested Upper Merged Ontology
Gerard de Melo2.2K views

Recently uploaded

STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdfDr. Jimmy Schwarzkopf
16 views29 slides
Data Integrity for Banking and Financial Services by
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial ServicesPrecisely
12 views26 slides
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...Bernd Ruecker
33 views69 slides
Transcript: The Details of Description Techniques tips and tangents on altern... by
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...BookNet Canada
135 views15 slides
PRODUCT PRESENTATION.pptx by
PRODUCT PRESENTATION.pptxPRODUCT PRESENTATION.pptx
PRODUCT PRESENTATION.pptxangelicacueva6
13 views1 slide

Recently uploaded(20)

STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf by Dr. Jimmy Schwarzkopf
STKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdfSTKI Israeli Market Study 2023   corrected forecast 2023_24 v3.pdf
STKI Israeli Market Study 2023 corrected forecast 2023_24 v3.pdf
Data Integrity for Banking and Financial Services by Precisely
Data Integrity for Banking and Financial ServicesData Integrity for Banking and Financial Services
Data Integrity for Banking and Financial Services
Precisely12 views
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker33 views
Transcript: The Details of Description Techniques tips and tangents on altern... by BookNet Canada
Transcript: The Details of Description Techniques tips and tangents on altern...Transcript: The Details of Description Techniques tips and tangents on altern...
Transcript: The Details of Description Techniques tips and tangents on altern...
BookNet Canada135 views
Empathic Computing: Delivering the Potential of the Metaverse by Mark Billinghurst
Empathic Computing: Delivering  the Potential of the MetaverseEmpathic Computing: Delivering  the Potential of the Metaverse
Empathic Computing: Delivering the Potential of the Metaverse
Mark Billinghurst476 views
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive by Network Automation Forum
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLiveAutomating a World-Class Technology Conference; Behind the Scenes of CiscoLive
Automating a World-Class Technology Conference; Behind the Scenes of CiscoLive
PharoJS - Zürich Smalltalk Group Meetup November 2023 by Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi126 views
Business Analyst Series 2023 - Week 3 Session 5 by DianaGray10
Business Analyst Series 2023 -  Week 3 Session 5Business Analyst Series 2023 -  Week 3 Session 5
Business Analyst Series 2023 - Week 3 Session 5
DianaGray10237 views
Attacking IoT Devices from a Web Perspective - Linux Day by Simone Onofri
Attacking IoT Devices from a Web Perspective - Linux Day Attacking IoT Devices from a Web Perspective - Linux Day
Attacking IoT Devices from a Web Perspective - Linux Day
Simone Onofri15 views
Case Study Copenhagen Energy and Business Central.pdf by Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana16 views

From Linked Data to Tightly Integrated Data