L'acqua

885 views

Published on

Acqua

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
885
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
14
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

L'acqua

  1. 1. L'IDROSFERAL'IDROSFERA
  2. 2. La distribuzione dell'acqua sulla Terra
  3. 3. L'Idrosfera L'acqua presente sul globo terrestre costituisce l'idrosfera. L'idrosfera del pianeta Terra è basata sul ciclo delle acque, che passano continuamente dallo stato liquido, a quello gassoso e, in alcuni casi, allo stato solido. La gran parte di queste acque è raccolta negli oceani, che ne permettono il continuo riciclo. Sul nostro pianeta l'idrosfera è presente in forma solida, liquida e gassosa. E' raccolta in grandi serbatoi nelle concavità presenti sulla litosfera, la crosta solida del pianeta.
  4. 4. L'idrofera è costuita dal complesso di tutte le acque presenti nel nostro pianeta sia allo stato solido, sia allo stato liquido e areiforme. L'idrosfera del pianeta Terra è basata sul ciclo delle acque, che passano continuamente dallo stato liquido, a quello gassoso e, in alcuni casi, allo stato solido. La gran parte di queste acque è raccolta negli oceani, che ne permettono il continuo riciclo. Sul nostro pianeta si trovano 1,4 miliardi di chilometri cubi di acqua il 97% si trova nel mare il 3% nei ghiacciai e nelle calotte polari lo 0,2 % è acqua disponibile per l'uomo cioè acqua dolce, che si trova nei laghi, nei fiumi e nelle acque sotterranee (falde acquifere). Il Ciclo dell'Acqua La prima parte detta anche fase atmosferica (evaporazione → formazione delle nubi → venti) è alimentata dall’energia solare: circa ¼ di tutta l’energia proveniente dal Sole è utilizzata per l’evaporazione e viene accumulata nelle nuvole come energia potenziale. Nella seconda parte detta anche fase terrestre: (precipitazioni → deflusso dell’acqua) interviene la forza di gravità che provoca la ricaduta dell’acqua sul suolo e il movimento delle acque in superficie e in profondità: in questo modo l’energia accumulata nell’acqua delle nuvole si trasforma in energia cinetica. L'acqua che cade sul suolo ritorna al mare con le falde acquifere e con i corsi d'acqua.
  5. 5. Il sole, che attiva il ciclo dell’acqua, riscalda l’acqua del mare. Parte di essa evapora nell’aria. L’evaporazione avviene anche dalle acque dolci dei laghi e dei fiumi. Sul continente, l’evapotraspirazione, che è l’acqua traspirata dagli esseri viventi ed evaporata dal sole, apporta vapore all’aria. Le correnti d’aria ascensionali sollevano il vapore in alto nell’atmosfera dove la temperatura più bassa ne provoca la condensazione in goccioline microscopiche che formano le nuvole. I venti trasportano le nubi per il mondo, e le particelle delle nubi collidono, si accrescono, e cadono dal cielo come precipitazione. Mentre una gran parte delle precipitazioni cade nei mari, una parte cade sulle terre emerse dove, a causa della gravità, fluisce come ruscellamento superficiale. Parte del ruscellamento superficiale raggiunge i fiumi e si muove come flusso incanalato verso il mare, mentre parte di esso si accumula come acqua dolce nei laghi e nei fiumi. Non tutto il ruscellamento score in corpi idrici superficiali. Molto se ne infiltra nel terreno (infiltrazione). Parte dell’acqua si infiltra in profondità nel terreno ed alimenta gli acquiferi. Nel tempo, tuttavia, quest’acqua continua a muoversi, e parte rientra nel mare dove il ciclo termina…e ricomincia.
  6. 6. Il mare è un magazzino d’acqua C’è molta più acqua “immagazzinata” nei mari di quanta ve ne sia in movimento nel ciclo dell’acqua. Si stima che circa 1.338.000.000 chilometri cubi, dei 1.386.000.000 chilometri cubi di acqua presente in totale sulla terra, sono nei mari. Vuol dire circa il 96,5 per cento. Si stima anche che il mari forniscono circa il 90 per cento dell’acqua evaporata che entra nel ciclo idrologico.
  7. 7. L’evaporazione e perché avviene. L’evaporazione è il processo tramite il quale l’acqua si trasforma da liquido a gas o vapore. L’evaporazione è il modo principale in cui l’acqua torna nel ciclo ideologico sotto forma di vapore nell’atmosfera. Studi hanno dimostrato che i mari, i laghi ed i fiumi, producono circa il 90 per cento dell’umidità dell’atmosfera tramite l’evaporazione, mentre il rimanente 10 per cento proviene dalla traspirazione della vegetazione.
  8. 8. Evapotraspirazione: il processo attraverso il quale il vapore d’acqua è disperse nell’atmosfera dall’evaporazione dal suolo e dalla traspirazione della vegetazione. Sebbene alcune definizioni di evapotraspirazione includano l’evaporazione dalla superficie delle masse d’acqua, come i laghi ed i mari, in questo Web site l’evapotraspirazione è definita come l’acqua ceduta all’atmosfera dalla superficie delle terre emerse, dall’evaporazione dalla frangia capillare dell’acqua sotterranea, e dalla traspirazione dell’acqua di origine sotterranea prodotta dalla vegetazione attraverso le foglie e l’erba.
  9. 9. L’atmosfera è ricca d’acqua. Sebbene l’atmosfera non sia una grande magazzino d’acqua, è la "super-autostrada" usata per spostare l’acqua intorno al mondo. C’è sempre acqua nell’atmosfera. Le nuvole, costituita da goccioline piccolissime, sono la forma più visibile di acqua atmosferica, ma anche l’aria limpida contiene acqua sotto forma di vapore, in molecole separate, troppo piccole per essere viste. Il volume di acqua nell’atmosfera è circa 12.900 milioni di chilometri cubi. Se tutta l’acqua nell’atmosfera piovesse in una sola volta, coprirebbe la superficie terrestre con uno spessore di 2,5 centimetri.
  10. 10. Condensazione: trasformazione dell’acqua da vapore a liquido. La condensazione è il processo con cui il vapore acqueo è trasformato in acqua liquida. E’ un processo che libera calore. La condensazione è importante per il ciclo dell’acqua perché dà origine alle nuvole. Le nuvole producono le precipitazioni, che sono il modo in cui l’acqua ritorna sulla terra. La condensazione è l’opposto dell’evaporazione. La condensazione è anche la causa della nebbia, dell’appannamento degli occhiali quando si passa da un ambiente esterno freddo in uno interno caldo e umido, delle goccioline che si formano sull’eterno di un bicchiere di bibita gelata, e dell’appannamento dell’interno dei vetri delle finestre nei giorni freddi.
  11. 11. Le coperture di ghiaccio nel mondo. L’acqua conservata per lunghi periodi di tempo nel ghiaccio, nella neve e nei ghiacciai, sono parte del ciclo idrologico globale. La stragrande maggioranza, circa il 90 per cento, delle masse glaciali della terra è in Antartide, mentre il ghiacciaio continentale della Groenlandia contiene circa il 10 per cento della massa di ghiaccio totale del globo. In Groenlandia, il ghiacciaio continentale ha uno spessore medio di circa 1.500 metri, ma può raggiungere i 4.300 metri. Intorno al Polo Nord esiste uno strato di ghiaccio galleggiante (banchisa) spesso pochi metri.
  12. 12. Ruscellamento da fusione delle nevi: In tutto il mondo, il ruscellamento da fusione della neve è una parte rilevante del movimento globale d’acqua. Nei climi più freddi, la maggior parte del ruscellamento primaverile e del flusso nei corsi d’acqua proviene dalla neve e dal ghiaccio in fusione. A parte le inondazioni, lo scioglimento rapido della neve può innescare delle frane, incluse le colate di detrito.
  13. 13. l ruscellamento superficiale è il ruscellamento da precipitazione sul paesaggio. Molte persone probabilmente pensano che la precipitazione cade sulla terra, scorre in superficie (ruscellamento) e corre nei fiumi che quindi si riversano nei mari. In realtà è più complicato, perché anche i fiumi prendono e cedono acqua al terreno. Tuttavia, molta dell’acqua dei fiumi proviene direttamente dal ruscellamento da precipitazione, definito ruscellamento superficiale.
  14. 14. Flusso incanalato:Il movimento dell’acqua nei fiumi. La "portata" è la quantità di acqua che scorre in un fiume, in un torrente o in un ruscello. I fiumi sono importanti non solo per la gente, ma per la vita in ogni luogo. L'acqua dei fiumi è utilizzata per bere, per irrigare, per produrre elettricità e come fonte di energia meccanica, per allontanare rifiuti liquidi (possibilmente trattati), per trasportare mercanzie e persone, e per ricavarne cibo. I fiumi sono essenziali per le piante e gli animali. Aiutano a mantenere carichi gli acquiferi sotterranei scaricando acqua in profondità attraverso il loro letto. Infine, i mari rimangono pieni d’acqua anche perché vi sboccano i fiumi.
  15. 15. Infiltrazione: il movimento dell’acqua dalla superficie verso il basso nel sottosuolo. Dappertutto nel mondo, parte dell’acqua che precipita come pioggia o neve s’infiltra nel sottosuolo. L’entità di questa parte dipende da numerosi fattori. L’infiltrazione della precipitazione che cade sui ghiacci della Groenlandia può essere molto piccola, mentre, come mostra questa immagine del fiume che scompare in una grotta in Georgia, in un solo punto la quantità di infiltrazione può essere elevatissima. Parte dell’acqua che s’infiltra rimane negli strati superficiali del suolo. Parte s’infiltra più profondamente (deflusso sotterraneo), ricaricando di acqua sotterranea gli acquiferi. Dagli acquiferi è possibile che l’acqua venga a giorno da sorgenti o che se ne possa estrarre scavando dei pozzi o delle gallerie. L’acqua può percorrere lunghe distanze o rimanere in un acquifero per lungo tempo prima di ritornare in superficie o filtrare verso un'altra massa d’acqua, come un fiume o il mare.
  16. 16. Acqua sotterranea Quando la precipitazione s’infiltra nel suolo, forma una zona satura ed una zona non satura, sovrapposte, normalmente con la zona satura in basso. Nella zona non satura c’è dell’acqua presente nei pori della roccia e del suolo, ma non li riempie completamente. L’acqua nella zona del suolo è utilizzata dalla vegetazione e da questa viene in parte trasformata in traspirazione. Nella zona satura, l’acqua occupa completamente gli spazi (pori e fratture) nella roccia e nel suolo. Da questa zona, che in pratica è un acquifero, l’acqua può essere estratta con i pozzi.
  17. 17. Il ciclo dell'acqua si può osservare in una pentola in ebollizione: Dall'acqua grazie al calore si alza vapore acqueo che condensa sul coperchio della pentola, per poi ricaderci sotto forma di gocce.
  18. 18. L'umidità relativa (o UR) è una quantità usata per misurare l'umidità presente nell'aria. E' definita come il rapporto della pressione parziale del vapore acqueo contenuto in un miscuglio gassoso di aria e vapore acqueo rispetto alla pressione di vapor saturo, espressa in percentuale. Un'umidità relativa del 100% indica che il miscuglio gassoso contiene la massima quantità di umidità possibile per le date condizioni di temperatura e pressione. La quantità di vapore che può essere contenuta da una massa d'aria diminuisce al diminuire della temperatura, e diventa nulla a -40°C. Lo strumento usato per misurare l'umidità relativa si chiama igrometro. L'umidità assoluta esprime la densità del vapore acqueo in una massa d'aria umida (miscela vapore acqueo-aria) Più precisamente, essa misura quanti grammi di vapore acqueo sono presenti in 1 m3 d'aria umida, a una data temperatura e una data pressione.
  19. 19. Il Principio di Pascal Si pensi a dell'acqua in un recipiente: l'acqua esercita della forza sulle pareti del recipiente le quali reagiscono con forze uguali ed opposte, realizzando così una situazione di equilibrio. Quanto detto va sotto il nome di principio di Pascal, che viene solitamente presentato in questa forma: La pressione esercitata su un fluido racchiuso in un recipiente si trasmette invariata a qualsiasi punto del fluido e alle pareti del recipiente che lo contiene.
  20. 20. Legge di Pascal. Consideriamo un recipiente contenente un liquido (per esempio dell'acqua) dotato di un pistone ben aderente alla superficie interna del contenitore ed a contatto con il liquido. Supponiamo che sul pistone agisca una certa forza : Supponiamo di praticare dei fori nel recipiente (e nel pistone stesso). Ovviamente, se si aumenta la forza che agisce suo pistone, il liquido fuoriesce con maggior "intensità" dal recipiente. L'esperienza mostra quindi che la pressione è aumentata non solo sulla superficie a contatto con il pistone, ma anche in corrispondenza dei fori. L'aumento di pressione è lo stesso in tutti i punti del liquido e corrisponde a quello esercitato dal pistone. Il fenomeno è descritto dalla legge di Pascal : "la pressione esercitata sulla superficie di un liquido si trasmette inalterata su tutte le superfici a contatto con il liquido".
  21. 21. In questo caso la pressione che agisce sull'acqua è la pressione atmosferica
  22. 22. Legge di Stevino (Simon Stevin, 1548 - 1620). Esprime la pressione che un liquido esercita sul fondo di un recipiente in funzione della densità del liquido, dell'accelerazione di gravità e dell'altezza del liquido. La pressione risulta essere direttamente proporzionale alla densità ed all'altezza del liquido. Osservando la formula, notiamo che la pressione non dipende dalla superficie della base del recipiente. Questo significa che uguali colonne di liquido di superficie diversa, esercitano sul fondo la stessa pressione !!
  23. 23. Una nuvola, o nube, è una massa visibile di piccole goccioline d'acqua o cristalli di ghiaccio sospesi nell'atmosfera, sopra la superficie terrestre. Le nuvole che si formano sulla Terra sono costituite di vapore acqueo che, condensandosi, forma piccole goccioline o cristalli di ghiaccio, solitamente di 0,01 mm di diametro. Quando si formano agglomerati di miliardi queste goccioline, appare visibile la nuvola, di un tipico colore bianco, dovuto all'alta riflessione della luce (fra il 60% e il 85%) sulla superficie di queste goccioline. A causa dell'elevata dispersione della luce nelle goccioline che compongono la nube, essa può apparire anche grigia o a volte quasi nera. Maggiore sarà la densità della nube e maggiore il suo spessore, più scura essa apparirà . Questo è il motivo per cui una nube temporalesca, generalmente un cumulonembo, appare molto scura alla base. Le nubi sono prodotte dalla condensazione del vapore generato dall'evaporazione dell'acqua sulla superficie terrestre (contenuta nei mari, laghi, fiumi, etc.) a causa del riscaldamento solare. Il fenomeno, per quanto complesso, si può riassumere come segue: A causa dell'irraggiamento solare la temperatura della superficie terrestre aumenta. Per conduzione termica il suolo caldo scalda anche l'aria a contatto con esso. Poiché l'aria calda è più leggera di quella fredda, essa si solleva generando una corrente ascensionale e portando con se l'umidità contenuta. Salendo, l'aria si raffredda adiabaticamente, raggiungendo il punto di saturazione del vapore, il quale pertanto si trasforma in minuscole goccioline di acqua, che galleggiano nell'aria, formando per l'appunto le nubi. Se la temperatura è particolarmente bassa, queste si trasformano in microscopici cristalli di ghiaccio.
  24. 24. Costruiamo una nuvola in una bottiglia
  25. 25. Vari tipi di nuvole
  26. 26. La capillaritàLa capillarità è l'insieme di fenomeni dovuti alle interazioni fra le molecole di un liquido e un solido (per esempio le pareti di un recipiente) sulla loro superficie di separazione. Le forze in gioco che si manifestano in tale fenomeno sono la coesione, l'adesione e la tensione superficiale. Essa ad esempio si manifesta sulla superficie del liquido in contatto col solido che può presentarsi sollevata (nel caso dell' acqua), poiché le forze di adesione tra l'acqua ed il recipiente che la contiene sono maggiori delle forze di coesione tra le molecole d'acqua, o infossata (nel caso del mercurio) rispetto al resto della superficie, perché in questo caso sono le forze di coesione a prevalere rispetto alle forze di adesione.
  27. 27. La capillaritàLa capillarità
  28. 28. La tensione superficiale è una particolare proprietà dei fluidi che opera lungo la superficie di separazione (interfaccia) tra il fluido stesso ed un materiale di un'altra natura, ad esempio un solido, un liquido o un gas. Dal punto di vista termodinamico può essere definita come il lavoro necessario per aumentare la superficie del liquido di una quantità unitaria.

×