Complexity And The Environment


Published on

Published in: Technology, Business
1 Like
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Complexity And The Environment

  1. 2. About The Speaker <ul><li>Author </li></ul><ul><ul><li>50 Awesome Auto Projects for the Evil Genius </li></ul></ul><ul><ul><li>Build Your Own Car PC </li></ul></ul><ul><ul><li>50 Model Rocket Projects for the Evil Genius </li></ul></ul><ul><ul><li>Domestic Solar Energy </li></ul></ul><ul><ul><li>Solar Energy Projects for the Evil Genius </li></ul></ul><ul><ul><li>101 Fuel Cell Projects for the Evil Genius </li></ul></ul><ul><li>Diploma Design & Innovation </li></ul><ul><li>BSc. (Hons.) Technology (Open) 2(i) </li></ul><ul><li>MSc. Architecture: Advanced Environmental & Energy Studies </li></ul><ul><ul><li>(Awaiting result) </li></ul></ul><ul><li>Worked on ‘Alternative Energy Strategy’ 2007 Think Tank @ Centre for Alternative Technology </li></ul><ul><li>Advised Members of U.S. Congress On Energy Policy </li></ul><ul><ul><li>Working on Dennis Kucinich’s Presidential Energy Manifesto for the U.S. </li></ul></ul>
  2. 3. Renewable Energy – Powering Your Future Gavin D. J. Harper
  3. 4. Why Renewables? <ul><li>Predictable Shortage Of Fossil Fuels </li></ul><ul><li>Enduring Energy Security </li></ul><ul><li>No ‘Wastes’ </li></ul><ul><li>Carbon Emissions / Climate Change </li></ul>
  4. 5. Hubbert’s Peak <ul><li>M. King Hubbert 1956 </li></ul><ul><li>Presented to the </li></ul><ul><li>American Petroleum Institute in 1956 </li></ul><ul><li>Peak Oil </li></ul><ul><li>Peak Coal </li></ul><ul><li>Peak Gas </li></ul><ul><li>Peak Uranium </li></ul>
  5. 6. Hubbert’s Peak Theory <ul><li>Production at first increases approximately exponentially, as more extraction commences and more efficient facilities are installed. At some point, a peak output is reached, and production begins declining until it approximates an exponential decline. </li></ul>
  6. 7. Carbon Emissions
  7. 8. Climate Change <ul><li>Producing 10% of UK electricity from renewables by 2010 could cut carbon emissions by 2.5 million tonnes p.a. (DTI) </li></ul>
  8. 10. Concerns About Renewables <ul><li>Intermittency </li></ul><ul><li>Small ‘Unit Size’ </li></ul>
  9. 11. Concerns - Intermittency <ul><li>Geographically distributed renewables ‘even out’ variations. </li></ul><ul><li>Load balancing </li></ul><ul><ul><li>Pumped Storage </li></ul></ul><ul><ul><ul><li>Dinorwig </li></ul></ul></ul><ul><ul><ul><li>‘ Quarries as Batteries’ </li></ul></ul></ul><ul><ul><li>Fuel Cells </li></ul></ul>
  10. 12. Solar Energy
  11. 14. Solar Energy Stats <ul><li>164 W m -2 on average over the Earth’s surface over the course of 24 hours </li></ul><ul><li>The Earth Receives 84TW power </li></ul>
  12. 15. Seasonal Variation (Northern Hemisphere)
  13. 16. Sunpath Diagrams
  14. 17. Orient Solar Collectors To Maximise Power Output
  15. 18. Angle of Incidence Affects Power Output <ul><li>The same area of light coming at an angle is spread over a larger area. </li></ul>
  16. 19. Solar Trackers
  17. 20. History of the Solar Cell <ul><li>Photovoltaic Effect - Alexandre-Edmond Becquerel. (1833) </li></ul><ul><li>First Solar Cell Made – Charles Fritts (1883) </li></ul><ul><li>Russell Ohl Patents first Solar Cell US2402662 “Light sensitive device” (1946) </li></ul><ul><li>Bell Laboratories discover doped silicon responsive to light (1954) </li></ul>
  18. 21. Types of Solar Cell <ul><li>Cell Material Efficiency Area For 1 kW Peak </li></ul><ul><li>Monocrystalline Silicon 15-18% 7-9m 2 </li></ul><ul><li>Polycrystalline Silicon 13-16% 8-11m 2 </li></ul><ul><li>Thin Film (CIS) 7.5-9.5% 11-13m 2 </li></ul><ul><li>Thin Film Cadmium Telluride 6-9% 14-18m 2 </li></ul><ul><li>Amorphous Silicon 5-8% 16-20m 2 </li></ul>
  19. 22. Silicon
  20. 23. Phosphorus Doping ‘Adds’ an Electron
  21. 24. Boron Doping ‘Removes’ an Electron
  22. 25. Monocrystalline Solar Cell <ul><li>Silicon Solar Cell </li></ul><ul><li>PN Junction </li></ul>
  23. 26. Nanosolar Source:
  24. 27. Nanosolar <ul><li>Printable Solar Production Process </li></ul><ul><li>Copper-Indium-Gallium-Selenium on Polymer Substrate (thin film). </li></ul><ul><li>Cells estimated to cost 1/5 th to 1/10 th cost of traditional silicon cell. </li></ul><ul><li>New plant capacity of 430MW / year. </li></ul>
  25. 28. Photochemical Solar Cells
  26. 31. Photovoltaic Organic LED’s Source:
  27. 32. Photovoltaic Organic LED’s <ul><li>Combines Light-Emitting Diode with the ability to generate electricity. </li></ul><ul><li>Research undertaken at Cornell University. </li></ul><ul><li>Process needs efficiency-boost to practical. </li></ul><ul><li>Possibility for windows that generate power in the day and illuminate at night. </li></ul>
  28. 33. Holographic Solar Cells Source:
  29. 34. Holographic Solar Cells <ul><li>Use Holographic Optical Elements to concentrate light. </li></ul><ul><li>More compact, and lighter than traditional concentrators. </li></ul><ul><li>25-85% reduction in silicon Watt for Watt </li></ul><ul><li>Possible cost reductions of up to 75%? </li></ul><ul><li>Multiplies light falling on cells by up to 10%. </li></ul>
  30. 35. ‘ EnviroMission’ Solar Tower Source:
  31. 36. ‘ EnviroMission’ Solar Tower <ul><li>Functioning Experimental Prototype Solar Tower in Spain </li></ul><ul><li>1600 feet tall, 260 feet diameter </li></ul><ul><li>Two mile diameter canopy </li></ul><ul><li>Planned for Australia, China, America </li></ul><ul><li>Power for a small city </li></ul>
  32. 37. Hydro Power
  33. 39. Hydropower Technologies <ul><li>‘Traditional’ Large Hydro (Big Dams) </li></ul><ul><li>Micro Hydro (Small Rivers / Streams) </li></ul><ul><li>Wave Power </li></ul><ul><ul><li>Waves Driven By Wind On The Sea </li></ul></ul><ul><ul><li>Less Predictable </li></ul></ul><ul><li>Tidal Power </li></ul><ul><ul><li>Lunar Driven Process </li></ul></ul><ul><ul><li>Very Predictable </li></ul></ul>
  34. 40. Wave Power <ul><li>&quot;The World Energy Council has estimated the ‘useful’ global ocean wave energy resource as ... >2TW (17,500TWh/year). From this it has been estimated (Thorpe 1999) that the practical economic contribution from wave energy converters could be 2,000TWh/year (similar to current installed nuclear or hydroelectric generation capacity). Such generating capacity could result in up to 2 billion tonnes of CO2 emissions being displaced from fossil fuel generation per year - similar to current emissions from electricity generation in the US.&quot; </li></ul><ul><ul><li> via. </li></ul></ul>
  35. 41. Hydropower Physics <ul><li>The amount of power a hydroelectric dam can produce is determined by the amount of potential energy stored in the water behind the dam. </li></ul><ul><li>The water is at a height (head) above the turbine, and the amount of work it can do is the product of the head and the weight of the water. </li></ul>
  36. 42. Hydropower Physics <ul><li>E = mgh </li></ul><ul><li>E = Energy </li></ul><ul><li>m = mass </li></ul><ul><li>g = acceleration due to gravity (9.8 m s -1 ) </li></ul><ul><li>h = Height </li></ul>
  37. 43. Hydropower Physics <ul><li>The height of the dam will not change so the head remains constant. </li></ul><ul><li>The force as a result of gravity does not change. </li></ul><ul><li>So the only things that change over time is the mass flowing through the turbine – which is directly proportional to the energy produced. </li></ul>
  38. 44. Hydropower Physics <ul><li>E = Energy </li></ul><ul><li>t = Time </li></ul><ul><li>m = Mass </li></ul><ul><li>g = Gravity </li></ul><ul><li>h = Height </li></ul>
  39. 45. Biofuels
  40. 46. Biofuels <ul><li>Biogas </li></ul><ul><li>Waste as a Resource </li></ul><ul><li>Ethanol </li></ul><ul><li>Biodiesel </li></ul><ul><li>Wood </li></ul><ul><li>Algae </li></ul>
  41. 47. Biogas <ul><li>Anaerobic Digestion of Wastes </li></ul><ul><ul><li>Sewerage </li></ul></ul><ul><ul><li>Agricultural Wastes / Slurry </li></ul></ul><ul><ul><li>Food Processing Waste </li></ul></ul><ul><li>Pyrolysis – Production of Syngas </li></ul><ul><ul><li>Syngas – Carbon Monoxide / Hydrogen </li></ul></ul>
  42. 48. Waste as a Resource Waste Pyrolysis Synthesis Gas Combustion Heat & Power <ul><li>Wide Range of Feedstocks </li></ul><ul><li>Combustion / Fuel Cell Technology </li></ul><ul><li>Good Waste Management Practise </li></ul>
  43. 49. Waste as a Resource Science 7 July 2006: Vol. 313. no. 5783, p. 25 DOI: 10.1126/science.313.5783.25d 250 Tonnes of Chocolate Volume = 33 Double Deckers 33 of these Not these
  44. 50. Waste as a Resource <ul><li>… if the chocolate were burned for energy, it could provide 5500 gigajoules (1,530,000 kilowatt-hours)--enough to power a town of 90,000 people for a week. &quot;Chocolate is biomass,&quot; says Gaynor Hartnell of the Renewable Energy Association in London. &quot;It is also very calorific, so burning seems a sensible idea.&quot; </li></ul>
  45. 51. Biodiesel <ul><li>Clean </li></ul><ul><li>Non Toxic </li></ul><ul><li>‘Carbon Neutral (?)’ </li></ul>
  46. 52. The Chemistry of Biodiesel Triglyceride (Vegetable Oil)
  47. 53. Algae <ul><li>Research into ‘Hydrogen Producing’ Algae </li></ul><ul><li>Research into using algae with pyrolysis to make ‘syngas’ </li></ul><ul><li>Algae Biodiesel </li></ul>
  48. 54. Wind Power
  49. 55. Power Available From The Wind <ul><li>P = Power </li></ul><ul><li>ρ = Density of Air </li></ul><ul><li>π = pi – 3.14… </li></ul><ul><li>r = Radius of Turbine </li></ul><ul><li>v = Velocity </li></ul>
  50. 56. Density of Air <ul><li>The Density of Air Changes with Altitude and atmospheric conditions… </li></ul><ul><li>As an baseline, on a cool 15°C day at sea level, air density is 1.225 kg m -3 </li></ul>
  51. 57. What Does This Tell Us? Energy available to the turbine increases as a ‘ cube’ of wind speed Economies of scale with scaling up turbines. Power increases as a square of the radius of the turbine.
  52. 58. Suggested Reading <ul><li>George Monbiot ( ) </li></ul><ul><li>New Scientist, 3rd October 2006 </li></ul><ul><li>“ Small is Useless” </li></ul><ul><li>Monbiot asserts… “Micro generation can’t solve climate change” </li></ul>
  53. 59. Betz’ Law <ul><li>Developed by Albert Betz, German Physicist. </li></ul><ul><li>Regardless of design of turbine Betz’ limit applies </li></ul><ul><li>It states maximum amount of energy a turbine can extract from moving air is 59% </li></ul>
  54. 60. Wind Energy Myths <ul><li>DTI Wind Power: 10 Myths Explained </li></ul><ul><ul><li>A single 1.8MW turbine provides power for 1,000 homes. </li></ul></ul><ul><ul><li>Existing wind capacity provides power for 500,000 homes. </li></ul></ul><ul><ul><li>The energy used to manufacture a wind turbine is recovered within 3-5 months. </li></ul></ul><ul><ul><li>Over the life of a turbine, the energy in manufacture will be repaid at least 50 times. </li></ul></ul>
  55. 61. Climate Change <ul><li>Denmark has a turbine density 30 times that of the UK (DTI) </li></ul><ul><li>To produce 10% of our electricity by wind we would need to increase current capacity by a factor of one and a half times again. </li></ul>
  56. 62. ‘Wind Trees’ Source:
  57. 63. ‘Wind Trees’ <ul><li>One Architecture, Tom Matton, NL Architects </li></ul><ul><li>Commissioned by the Dutch Government </li></ul><ul><li>Hold up to 8 Turbines </li></ul><ul><li>120 Metres High </li></ul>
  58. 64. Grimshaw Aerogenerator Source:
  59. 65. Grimshaw Aerogenerator <ul><li>Design Concept </li></ul><ul><li>Spins at 3 rpm </li></ul><ul><li>Generates a projected 9MW </li></ul><ul><li>Omnidirectional </li></ul><ul><li>Possibility to integrate wave/tidal power </li></ul><ul><li>3-5 years development reauired </li></ul>
  60. 66. Display Turbines Source:
  61. 67. Display Turbines <ul><li>Provides additional income stream at the expense of some energy. </li></ul><ul><li>Turbine ‘scans’ a row of LED’s across the onlooker’s field of view. </li></ul><ul><li>The LED’s are rapidly turned on and off by a microcontroller. </li></ul><ul><li>Persistence of vision allows the viewer to see the display as a complete image. </li></ul>
  62. 68. Hydrogen Fuel Cells
  63. 69. William Robert Grove
  64. 70. Hydrogen Fuel Cells <ul><li>Hydrogen Is Not An ‘Energy Source’ It Is An ‘Energy Carrier’. </li></ul><ul><li>Hydrogen Is Only ‘Clean’ If It Is Produced In A Sustainable Manner. </li></ul><ul><li>‘Long Tailpipe’ Argument </li></ul><ul><li>Only Emission At Point Of Use Is Water </li></ul><ul><li>Not Limited By ‘Carnot Efficiency’ of Thermal Engines </li></ul>
  65. 71. Significance of Hydrogen for Renewable Energy <ul><li>Provides A Means Of ‘Storing Power’ </li></ul><ul><li>Turns ‘Renewable Energy’ into ‘Transportable Fuel’ </li></ul><ul><li>Technology Capable of Displacing Oil For Transport </li></ul>
  66. 72. How Fuel Cells Integrate With Renewables
  67. 73. Types of Fuel Cell <ul><li>Alkaline Fuel Cell </li></ul><ul><li>Proton Exchange Membrane </li></ul><ul><ul><li>AKA. (Polymer Electrolyte Membrane) </li></ul></ul><ul><li>Direct Methanol Fuel Cell </li></ul><ul><li>Phosphoric Acid Fuel Cell </li></ul><ul><li>Molten Carbonate Fuel Cell </li></ul><ul><li>Solid Oxide Fuel Cell </li></ul>
  68. 74. Hydrogen In Oxygen In Exhaust Out Proton Exchange Membrane Catalyst Electrical Current
  69. 75. H H H H H H
  70. 76. H H H H + + H H + + e - e - e - e - e -
  71. 77. O O e - e - e - e - e - H H + + H H + + O O
  72. 78. O O e - e - e - e - e - H H + + H H + + O O
  73. 79. O O H 2 O H 2 O H 2 O H H + + e - e -
  74. 80. Hydrogen Production <ul><li>Electrolysis (Renewable Energy) </li></ul><ul><li>Biomass Gasification & Reformation </li></ul><ul><li>Steam Reformation of Fossil Fuel </li></ul><ul><li>Photoelectrolysis </li></ul><ul><li>‘ Clean’ Coal </li></ul><ul><li>Biologically Produced Hydrogen </li></ul>
  75. 81. Fuel Cell Applications <ul><li>Portable Electronic Devices </li></ul><ul><li>‘Private’ Transport </li></ul><ul><li>‘Public’ Transport </li></ul><ul><li>Marine Transport </li></ul><ul><li>Power Distribution </li></ul>
  76. 82. Technology Status <ul><li>Major Vehicle Manufactures Say ‘2010’ For ‘General Sale’ </li></ul><ul><li>Infrastructure Barrier </li></ul><ul><li>‘Platinum’ Provides Cost Barrier </li></ul><ul><ul><li>2002 £600 For Every kW Output </li></ul></ul><ul><ul><li>2007 £20 For Every kW Output </li></ul></ul>
  77. 83. Further Reading <ul><li> </li></ul><ul><li>Search for: “Build Your Own Band Aid Fuel Cell” </li></ul>
  78. 84. The Obligatory Book Plug Solar Energy Projects for the Evil Genius Mc Graw Hill Professional ISBN-10: 0071477721 ISBN-13: 978-0071477727 Gavin D. J. Harper TREMENDOUS VALUE At the meagre sum of… £12.47 ( $16.47 (