Jhiss guia

319 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
319
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Jhiss guia

  1. 1. Presentado por:<br />Jhasbleidy Ramírez Bernal<br />Betty Guerrero Prieto<br />Presentado a:<br />Mauricio Cendales<br />Centro de electricidad, electrónica y telecomunicaciones<br />C. E. E. T<br />Grupo: 40138<br />Bogotá<br />2010<br />B) Tipos de redes según su extensión<br />En la primera parte del curso ya se estudió una clasificación de las redes informáticas en función de su topología (forma lógica o física de la red). En este sentido tenemos los siguientes tipos de redes:<br />Redes de Área Local (LAN)<br />Una LAN (Local Area Network) es un sistema de interconexión de equipos informáticos basado en líneas de alta velocidad (decenas o cientos de megabits por segundo) y que suele abarcar, como mucho, un edificio. Las principales tecnologías usadas en una LAN son: Ethernet, Token ring, ARCNET y FDDI. Un caso típico de LAN es en la que existe un equipo servidor de LAN desde el que los usuarios cargan las aplicaciones que se ejecutarán en sus estaciones de trabajo. Los usuarios pueden también solicitar tareas de impresión y otros servicios que están disponibles mediante aplicaciones que se ejecutan en el servidor. <br />Redes de Área Metropolitana (MAN)<br />Una MAN (Metropolitan Area Network) es un sistema de interconexión de equipos informáticos distribuidos en una zona que abarca diversos edificios, por medios pertenecientes a la misma organización propietaria de los equipos. Este tipo de redes se utiliza normalmente para interconectar redes de área local.<br />Redes de Área Extensa (WAN)<br />Una WAN (Wide Area Network) es un sistema de interconexión de equipos informáticos geográficamente dispersos, que pueden estar incluso en continentes distintos. El sistema de conexión para estas redes normalmente involucra a redes públicas de transmisión de datos.<br />C) Componentes principales de una red<br />Cable de red (UTP): Permite las conexiones físicas con un cable par trenzado sin malla. Entre los conectores de los cables de red se puede apreciar el Rj-45, éste es el más utilizado para redes de computadoras.<br />Cable coaxial: Utiliza un conector BNC.<br />Hardware de red: Dirige el flujo de datos por medio de los cables de red. Se encuentra comprendido por la tarjeta de red o NIC (Network Interface Card), es decir, tarjeta de interfaz con la red de trabajo. Componente clave para conectar una computadora con una red de área local.<br />Software de red: Controla el flujo de datos, mantiene la seguridad de la red, administra el registro de las cuentas de usuarios, entre otros. Además, este software se encuentra representado por un programa o software exclusivo para servidores, el cual es: NOS (Network Operating System), sistema operativo para redes.<br />Switch: es un dispositivo de propósito especial diseñado para resolver problemas de rendimiento en la red, debido a anchos de banda pequeños y embotellamientos. El Switch puede agregar mayor ancho de banda, acelerar la salida de paquetes, reducir tiempo de espera y bajar el costo por puerto.<br />Routers: Es un dispositivo de interconexión de redes informáticas que permite asegurar el enrutamiento de paquetes entre redes o determinar la ruta que debe tomar el paquete de datos. El routers cuenta con tablas de enrutamiento actualizadas, que son verdaderos mapas de los itinerarios que pueden seguirse para llegar a la dirección de destino. Existen numerosos protocolos dedicados a esta tarea.<br />Tarjetas de módem: El módem permite al ordenador conectarse a otros ordenadores por medio de una línea telefónica. El otro ordenador puede ser un proveedor de servicios de Internet, un ordenador lejano en otra parte del planeta, el PC de un amigo, el ordenador del trabajo, etc. Una vez conectados, se pueden transmitir datos en uno u otro sentido, y así, se podrá descargar una página Web, enviar mensajes o intercambiar archivos.<br />Servidores: Los servidores de ficheros conforman el corazón de la mayoría de las redes. Se trata de ordenadores con mucha memoria RAM, un enorme disco duro (o varios) y una rápida tarjeta de red. El sistema operativo de red se ejecuta sobre estos servidores así como las aplicaciones compartidas.<br />Estaciones de trabajo: Son los ordenadores conectados al servidor. Las estaciones de trabajo no han de ser tan potentes como el servidor, simplemente necesitan una tarjeta de red, el cableado pertinente y el software necesario para comunicarse con el servidor. Una estación de trabajo puede carecer de disquetera y de disco duro y trabajar directamente sobre el servidor. Prácticamente cualquier ordenador puede actuar como una estación de trabajo.<br />Bridges: Los bridges se utilizan para segmentar redes grandes en redes más pequeñas. De esta forma solo saldrá de la red pequeña el tráfico destinado a otra red pequeña diferente mientras que todo el tráfico interno seguirá en la misma red. Con esto se consigue una reducción del tráfico de red.<br />e) InterRedes<br />Un nuevo concepto que ha surgido de estos esquemas anteriores es el de Intercedes, que representa vincular redes como si se vincularán estaciones. Este concepto y las ideas que de este surgen, hace brotar un nuevo tipo especial de dispositivo que es un vinculador para interconectar redes entre sí (la tecnología de Internet está basada en el concepto de InterRedes), el dispositivo en cuestión se denomina " dispositivo de interconexión" . Es decir, lo que se conecta, son redes locales de trabajo.<br />Las tres topologías utilizadas para estos tipos de redes son:<br />Red de Enlace Central: Se encuentra generalmente en los entornos de oficina o campos, en los que las redes de los pisos de un edificio se interconectan sobre cables centrales. Los Bridges y los Routers gestionan el tráfico entre segmentos de red conectados.<br />Red de Malla: Esta involucra o se efectúa a través de redes WAN, una red malla contiene múltiples caminos, si un camino falla o está congestionado el tráfico, un paquete puede utilizar un camino diferente hacia el destino. Los routers se utilizan para interconectar las redes separadas.<br />Red de Estrella Jerárquica: Esta estructura de cableado se utiliza en la mayor parte de las redes locales actuales, por medio de concentradores dispuestos en cascada para formar una red jerárquica.<br />f) red LAN y red extendida<br />Red LAN: Es la interconexión de varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, o con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc., para compartir recursos e intercambiar datos y aplicaciones. En definitiva, permite una conexión entre dos o más equipos. El término red local incluye tanto el hardware como el software necesario para la interconexión de los distintos dispositivos y el tratamiento de la información<br />Red extensa: Es un sistema de comunicación entre computadoras, que permite compartir información y recursos, con la característica de que la distancia entre las computadoras es amplia (de un país a otro, de una cuidad a otra, de un continente a otro). Es comúnmente dos o mas redes de área loca interconectadas, generalmente a través de una amplia zona geográfica. Algunas redes de área extendida están conectadas mediante líneas rentadas a la compañía telefónica (destinadas para este propósito), soportes de fibra óptica y, otras por medio de sus propios enlaces terrestres y aéreos de satélite. Las redes de las grandes universidades pueden incluso contar con sus propios departamentos de telecomunicaciones que administran los enlaces entre las instalaciones y los satélites.<br />g) Jerarquías de protocolos<br />Una jerarquía de protocolos es una combinación de protocolos. Cada nivel de la jerarquía especifica un protocolo diferente para la gestión de una función o de un subsistema del proceso de comunicación. Cada nivel tiene su propio conjunto de reglas. Los protocolos definen las reglas para cada nivel en el modelo OSI:<br />Nivel de aplicaciónInicia o acepta una peticiónNivel de presentaciónAñade información de formato, presentación y cifrado al paquete de datosNivel de sesiónAñade información del flujo de tráfico para determinar cuándo se envía el paqueteNivel de transporteAñade información para el control de erroresNivel de redSe añade información de dirección y secuencia al paqueteNivel de enlace de datosAñade información de comprobación de envío y prepara los datos para que vayan a la conexión físicaNivel físicoEl paquete se envía como una secuencia de bits<br />Los niveles inferiores en el modelo OSI especifican cómo pueden conectar los fabricantes sus productos a los productos de otros fabricantes, por ejemplo, utilizando NIC de varios fabricantes en la misma LAN. Cuando utilicen los mismos protocolos, pueden enviar y recibir datos entre sí. Los niveles superiores especifican las reglas para dirigir las sesiones de comunicación (el tiempo en el que dos equipos mantienen una conexión) y la interpretación de aplicaciones. A medida que aumenta el nivel de la jerarquía, aumenta la sofisticación de las tareas asociadas a los protocolos.<br />El Protocolo de control de transmisión/Protocolo Internet (TCP/IP): es un conjunto de Protocolos aceptados por la industria que permiten la comunicación en un entorno heterogéneo (formado por elementos diferentes). Además, TCP/IP proporciona un protocolo de red en caminable y permite acceder a Internet y a sus recursos. Debido a su popularidad, TCP/IP se ha convertido en el estándar de hecho en lo que se conoce como interconexión de redes, la intercomunicación en una red que está formada por redes más pequeñas. TCP/IP se ha convertido en el protocolo estándar para la interoperabilidad entre distintos tipos de equipos. La interoperabilidad es la principal ventaja de TCP/IP. La mayoría de las redes permiten TCP/IP como protocolo. TCP/IP también permite el encaminamiento y se suele utilizar como un protocolo de interconexión de redes.<br />NetWare: Al igual que TCP/IP, Novell proporciona un conjunto de protocolos desarrollados específicamente para NetWare. Los cinco protocolos principales utilizados por NetWare son:<br />Protocolo de acceso al medio. <br />Intercambio de paquetes entre redes/Intercambio de paquetes en secuencia (IPX/SPX). <br />Protocolo de información de encaminamiento (RIP).  <br />Protocolo de notificación de servicios (SAP). <br />Protocolo básico de NetWare (NCP). <br />Debido a que estos protocolos se definieron antes de la finalización del modelo OSI, no se ajustan exactamente al modelo OSI. Actualmente, no existe una correlación directa entre los límites de los niveles de las dos arquitecturas. Estos protocolos siguen un patrón de recubrimiento. Concretamente, los protocolos de nivel superior (NCP, SAP y RIP) están recubiertos por IPX/SPX. Luego, una cabecera y un final del Protocolo de acceso al medio recubren a IPX/SPX.<br />2. TOPOLOGIAS DE LA RED<br />ESTRELLABUS <br />ANILLOMIXTA <br />ARBOLDOBLE ANILLO <br />TOTALMENTE CONEXAMALLA <br />3. Tipos de Redes, Hardware de Redes y Medios de Transmisión<br />Red LAN y metropolitana<br />Routers con wireless<br />Inalámbrico-60960159385<br />-2286027305<br />4. Modelo OSI<br />El modelo especifica el protocolo que debe ser usado en cada capa, y suele hablarse de modelo de referencia ya que es usado como una gran herramienta para la enseñanza de comunicación de redes. Este modelo está dividido en siete capas:<br />Capa física (Capa 1)<br />Es la que se encarga de las conexiones físicas de la computadora hacia la red, tanto en lo que se refiere al medio físico como a la forma en la que se transmite la información.<br />Sus principales funciones se pueden resumir como:<br />Definir el medio o medios físicos por los que va a viajar la comunicación: cable de pares trenzados (o no, como en RS232/EIA232), coaxial, guías de onda, aire, fibra óptica.<br />Definir las características materiales (componentes y conectores mecánicos) y eléctricas (niveles de tensión) que se van a usar en la transmisión de los datos por los medios físicos.<br />Definir las características funcionales de la interfaz (establecimiento, mantenimiento y liberación del enlace físico).<br />Transmitir el flujo de bits a través del medio.<br />Manejar las señales eléctricas/electromagnéticas del medio de transmisión, polos en un enchufe, etc.<br />Garantizar la conexión (aunque no la fiabilidad de ésta).<br />Capa de enlace de datos (Capa 2)<br />Esta capa se ocupa del direccionamiento físico, de la topología de la red, del acceso a la red, de la notificación de errores, de la distribución ordenada de tramas y del control del flujo.<br />Capa de red (Capa 3)<br />El objetivo de la capa de red es hacer que los datos lleguen desde el origen al destino, aún cuando ambos no estén conectados directamente. Los dispositivos que facilitan tal tarea se denominan en caminadores, aunque es más frecuente encontrar el nombre inglés routers y, en ocasiones enrutadores. Los routers trabajan en esta capa, aunque pueden actuar como switch de nivel 2 en determinados casos, dependiendo de la función que se le asigne. Los firewalls actúan sobre esta capa principalmente, para descartar direcciones de máquinas.<br />En este nivel se realiza el direccionamiento lógico y la determinación de la ruta de los datos hasta su receptor final.<br />Capa de transporte (Capa 4)<br />Capa encargada de efectuar el transporte de los datos (que se encuentran dentro del paquete) de la máquina origen a la de destino, independizándolo del tipo de red física que se esté utilizando. La PDU de la capa 4 se llama Segmento o Datagrama, dependiendo de si corresponde a UDP o TCP. Sus protocolos son TCP y UDP; el primero orientado a conexión y el otro sin conexión.<br />Capa de sesión (Capa 5)<br />Esta capa es la que se encarga de mantener y controlar el enlace establecido entre dos computadores que están transmitiendo datos de cualquier índole.<br />Por lo tanto, el servicio provisto por esta capa es la capacidad de asegurar que, dada una sesión establecida entre dos máquinas, la misma se pueda efectuar para las operaciones definidas de principio a fin, reanudándolas en caso de interrupción. En muchos casos, los servicios de la capa de sesión son parcial o totalmente prescindibles.<br />Capa de presentación (Capa 6)<br />El objetivo es encargarse de la representación de la información, de manera que aunque distintos equipos puedan tener diferentes representaciones internas de caracteres los datos lleguen de manera reconocible.<br />Esta capa es la primera en trabajar más el contenido de la comunicación que el cómo se establece la misma. En ella se tratan aspectos tales como la semántica y la sintaxis de los datos transmitidos, ya que distintas computadoras pueden tener diferentes formas de manejarlas.<br />Esta capa también permite cifrar los datos y comprimirlos. En pocas palabras es un traductor.<br />Capa de aplicación (Capa 7)<br />Ofrece a las aplicaciones la posibilidad de acceder a los servicios de las demás capas y define los protocolos que utilizan las aplicaciones para intercambiar datos, como correo electrónico (POP y SMTP), gestores de bases de datos y servidor de ficheros (FTP). Hay tantos protocolos como aplicaciones distintas y puesto que continuamente se desarrollan nuevas aplicaciones el número de protocolos crece sin parar.<br />Cabe aclarar que el usuario normalmente no interactúa directamente con el nivel de aplicación. Suele interactuar con programas que a su vez interactúan con el nivel de aplicación pero ocultando la complejidad subyacente.<br />5. REDES INALÁMBRICAS<br /> (Wireless networks) en inglés es un término que se utiliza en informática para designar la conexión de nodos sin necesidad de una conexión física (cables), ésta se da por medio de ondas electromagnéticas. La transmisión y la recepción se realizan a través de puertos. Una de sus principales ventajas es notable en los costos, ya que se elimina todo el cable ethernet y conexiones físicas entre nodos, pero también tiene una desventaja considerable ya que para este tipo de red se debe de tener una seguridad mucho más exigente y robusta para evitar a los intrusos. En la actualidad las redes inalámbricas son una de las tecnologías más prometedoras.<br />Existen dos categorías de las redes inalámbricas.<br />Larga distancia: estas son utilizadas para distancias grandes como puede ser otra ciudad u otro país.<br />Corta distancia: son utilizadas para un mismo edificio o en varios edificios<br />EVOLUCION:<br />Los expertos empezaban a investigar en las redes inalámbricas hace ya más de 30 años. Los primeros experimentos fueron de la mano de uno de los grandes gigantes en la historia de la informática, IBM. <br /> <br />Las siguientes investigaciones se harían en laboratorios, siempre utilizando altas frecuencias, hasta que en 1985 la Federal Communication Comission asigna una serie de bandas al uso de IMS (Industrial, Scientific and Medical). La FCC es la agencia federal de EEUU encargada de regular y administrar en telecomunicaciones. <br />Esta asignación se tradujo a una mayor actividad en la industria y la investigación de LAN (red inalámbrica de alcance local) empezaba a enfocarse al mercado. Seis años más tarde, en 1991, se publicaban los primeros trabajos de LAN propiamente dicha, ya que según la norma IEEE 802 solo se considera LAN a aquellas redes que transmitan al menos a 1 Mbps <br />La red inalámbrica de alcance local ya existía pero su introducción en el mercado e implantación a nivel doméstico y laboral aun se haría esperar unos años. Uno de los factores que supuso un gran empuje al desarrollo de este tipo de red fue el asentamiento de Laptops y PDA en el mercado, ya que este tipo de producto portátil reclamaba más la necesidad de una red sin ataduras, sin cables<br />CONFLUENCIA TECNOLÓGICA<br />En este contexto, la previsión más realista, que también podría ser tachada de conservadora, apunta a una confluencia de ambas tecnologías: una red en la que coexistirá la radio y el cable y que, incluso la dualidad/antagonismo entre cable y radio aparecerá como algo transparente al usuario en el sentido de que sólo percibirá " la red" , una red sin costuras en la que el cable y el radio convivirán para proporcionar cada una de las partes sus puntos fuertes, complementándose para conseguir soluciones óptimas en cada entorno.En definitiva, precio, prestaciones y normas son los tres factores que, combinados, determinarán realmente la evolución del mercado de las WLAN: para que estos productos tengan el éxito necesario o lo que es lo mismo, para hablar de crecimientos desde una posición realista. Las WLAN tienen que presentar la misma capacidad y calidad de servicio al usuario que sus homólogas cableadas o, por lo menos, si no la misma, comparable. <br />De momento, las prestaciones de las WLAN se encuentran bastante por debajo de sus homólogas cableadas. Las WLAN trabajan a una décima parte de la velocidad de las LAN convencionales, entre 1,5 y 2 Mbps En particular, la mayor parte de fabricantes afirman haber conseguido velocidades de 2 Mbps en la banda de 2,45 GHz con una filosofía Ethernet. El próximo hito lo sitúan en 10 Mbps en base a mejoras de carácter incremental.<br />En lo que se refiere a este aspecto de una evolución de carácter incremental es importante destacar que se está observando actualmente una tendencia que, en algún momento, podría suponer una ruptura de la evolución de la tecnología de redes locales inalámbricas.<br />185356526670<br />NORMALIZACIÓN:<br />En 1990, en el seno de IEEE 802, se forma el comité IEEE 802.11, que empieza a trabajar para tratar de generar una norma para las WLAN. Pero no es hasta 1994 cuando aparece el primer borrador.<br />En 1992 se crea Winforum, consorcio liderado por Apple y formado por empresas del sector de las telecomunicaciones y de la informática para conseguir bandas de frecuencia para los sistemas PCS (Personal Communication Systems). En ese mismo año, la ETSI (Europea Telecomunicaciones Estándares Instituto), a través del comité ETSI-RES 10, inicia actuaciones para crear una norma a la que denomina Híper LAN (High Performance LAN) para, en 1993, asignar las bandas de 5,2 y 17,1 GHz En 1993 también se constituye la IRDA (Infrared Data Asociación) para promover el desarrollo de las WLAN basadas en enlaces por infrarrojos.<br />En 1996, finalmente, un grupo de empresas del sector de informática móvil y de servicios forman el Wireless LAN Interoperability Fórum (WLI Fórum) para potenciar este mercado mediante la creación de un amplio abanico de productos y servicios interpretativos. Del Comité de Normalización de Redes Locales (IEEE 802) del Instituto de Ingenieros Eléctricos, IEEE de Estados Unidos se puede entonces destacar las normas siguientes: · 802.3 CSMA/CD (ETHERNET) · 802.4 TOKEN BUS · 802.5 TOKEN RING · REDES METROPOLITANASPor otro lado, el Instituto Americano de Normalización, (ANSI), ha desarrollado unas especificaciones para redes locales con fibra óptica, las cuales se conocen con el nombre de FDDI, y es obre del Comité X3T9.5 del ANSI. La última revisión del estándar FDDI, llamada FDDI-II, ha adecuado la norma para soportar no sólo comunicaciones de datos, sino también de voz y video.<br /> <br />APLICACIONES:<br />Actualmente, las redes locales inalámbricas (WLAN) se encuentran instaladas mayoritariamente en algunos entornos específicos, como almacenes, bancos, restaurantes, fábricas, hospitales y transporte. Las limitaciones que, de momento, presenta esta tecnología ha hecho que sus mercados iníciales hayan sido los que utilizan información tipo " bursty" (períodos cortos de transmisión de información muy intensos seguidos de períodos de baja o nula actividad) y donde la exigencia clave consiste en que los trabajadores en desplazamiento puedan acceder de forma inmediata a la información a lo largo de un área concreta, como un almacén, un hospital, la planta de una fábrica o un entorno de distribución o de comercio al por menor; en general, en mercados verticales.<br />El previsible aumento del ancho de banda asociado a las redes inalámbricas y, consecuentemente, la posibilidad del multimedia móvil, permitirá atraer a mercados de carácter horizontal que surgirán en nuevos sectores, al mismo tiempo que se reforzarán los mercados verticales ya existentes. La aparición de estos nuevos mercados horizontales está fuertemente ligada a la evolución de los sistemas PCS (Personal Communication Sistemas), en el sentido de que la base instalada de sistemas PCS ha creado una infraestructura de usuarios con una cultura tecnológica y hábito de utilización de equipos de comunicaciones móviles en prácticamente todos los sectores de la industria y de la sociedad.<br />Esa cultura constituye el caldo de cultivo para generar una demanda de más y más sofisticados servicios y prestaciones, muchos de los cuales han de ser proporcionados por las WLAN. De hecho, según datos de la CTIA (Celular Telephone Industry Associations), los clientes de los proveedores de servicios por radio se muestran en general satisfechos con los servicios recibidos, pero esperan más tanto en términos de servicio como de precio, tanto en el contexto celular como PCS.<br />TIPOS DE ONDA:<br />Radio UHF:<br />Las redes basadas en equipos de radio en UHF necesitan para su instalación y uso una licencia administrativa. Tienen la ventaja de no verse interrumpida por cuerpos opacos, pudiendo salvar obstáculos físicos gracias a su cualidad de difracción.<br />WaveLAN es una red inalámbrica de NCR que utiliza las frecuencias de 902-928 MHz en Estados Unidos, aunque en Europa ha solicitado la concesión de otras frecuencias, ya que esta banda está siendo utilizada por la telefonía móvil. Esta red va a 2 Mbps, y tiene una cobertura de 335 metros. Puede utilizarse de forma independiente o conectada a una red Novell convencional (Arcnet, Token Ring o Ethernet)<br />Puré LAN es otra red de este tipo compatible con Novell NetWare, LAN Manager, LAN Server y TCP/IP. Va a 2 Mbps y tiene una cobertura de 240 metros.<br />Microondas:<br />Las microondas son ondas electromagnéticas cuyas frecuencias se encuentran dentro del espectro de las súper altas frecuencias, SHF, utilizándose para las redes inalámbricas la banda de los 18-19 GHz Estas redes tienen una propagación muy localizada y un ancho de banda que permite alcanzar los 15 Mbps.<br />Terrestres: Las antenas parabólicas se envían la información, alcanza kilómetros pero emisor y receptor deben estar perfectamente alineados. Su frecuencia es de 1 a 300 GHz.<br />Satélite: la información se reenvía de un satélite, es de las ondas más flexibles pero es fácil que sufra interferencias.<br /> <br />LASER O INFRAROJO:<br />Deben estar alineados directamente, no atraviesan paredes y tienen una frecuencia de 300 GHz a 384 Mhz.Hoy en día resulta muy útil para conexiones punto a punto con visibilidad directa, utilizándose fundamentalmente en interconectar segmentos distantes de redes locales convencionales (Ethernet y Token Ring). Es de resaltar el hecho de que esta técnica se encuentre en observación debido al posible perjuicio para la salud que supone la visión directa del haz. Como circuitos punto a punto se llegan a cubrir distancias de hasta 1000 metros, operando con una longitud de onda de 820 nanómetros.<br /> <br />Tipos de redes inalámbricas:<br />Como decíamos unas líneas más arriba, los tipos de redes inalámbricas dependen de su alcance y del tipo de onda electromagnética utilizada. Según su tamaño encontramos las siguientes redes, de menor a mayor alcance: <br />WPAN: (Wireless Personal Área Network): este tipo de red se utiliza con tecnologías como HomeRF, Bluetooth, ZigBee y RFID. Es una red personal de poco alcance, las tecnologías que la utilizan pueden conectar los teléfonos móviles de la casa y los ordenadores mediante un aparato central<br />WLAN:(Wireless Local Área Network) en las redes de área local podemos encontrar tecnologías inalámbricas basadas en HiperLAN (High Performance Radio LAN), o tecnologías basadas en Wi-Fi (Wireless-Fidelity).<br />WMAN:(Wireless Metropolitana Área Network, Wireless MAN) la tecnología más popular que utiliza esta red es WiMax (World Wide Interoperability for Microwave Access), un estándar de comunicación inalámbrica basado en la norma IEEE 802.16. Es muy parecido a Wi-Fi, pero tiene más cobertura y ancho de banda. Otro ejemplo es LMDS (Local Multipoint Distribution Service). <br />WWAN:(Wireless Wide Área Network, Wireless WAN) es la red que se utiliza para los teléfonos móviles de segunda y tercera generación (UMTS) y para los móviles GPRS (tecnología digital).<br />

×