28                                                    Reg. No. :                    Question Paper Code :                 ...
28                               PART B — (5 × 16 = 80 marks) 11.   (a)   (i)    Define piezoelectric effect.             ...
28 14.   (a)   Explain the theory of blackbody radiation due to Planck. Also discuss the             limits of high temper...
Upcoming SlideShare
Loading in …5
×

Physics I Jan 2011

3,066 views

Published on

university question

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,066
On SlideShare
0
From Embeds
0
Number of Embeds
1,788
Actions
Shares
0
Downloads
10
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Physics I Jan 2011

  1. 1. 28 Reg. No. : Question Paper Code : 10004 43 B.E./B.Tech. DEGREE EXAMINATION, JANUARY 2011. First Semester Common to all branches 182101 – ENGINEERING PHYSICS – I (Regulation 2010) Time : Three hours Maximum : 100 marks 28 Answer ALL questions. PART A — (10 × 2 = 20 marks) 1. Can we use a copper rod in a magnetostriction generator? Why? 2. An ultrasound pulse sent by a source in sea is reflected by a submerged target at a distance 597.50m and reaches the source after 0.83 seconds. Find the 43 velocity of sound in sea water. 3. Can a two-level system be used for the production of laser? Why? 4. Mention any two differences between a hologram and a photograph. 5. What is called mode of propagation in optical fibers? 6. Mention the properties of detectors used in fiber – optic communication. o 7. Calculate the energy in eV of a photon of wavelength 1.2 A . (Planck’s constant = 6.62 × 10–34 Js. speed of light = 3 × 10 8 m / s ). 28 8. Mention the physical significance of wave function of matter waves. o 9. The interplanar distance of (110) planes in a BCC crystal is 2.03 A . What is the lattice parameter of the crystal?43 10. List the different types of point defects.
  2. 2. 28 PART B — (5 × 16 = 80 marks) 11. (a) (i) Define piezoelectric effect. (2) (ii) With a neat diagram, explain the construction and working of a 43 piezoelectric oscillator. (12) (iii) Briefly outline the emulsification using ultrasonic waves. (2) Or (b) (i) What is acoustic grating? With a neat diagram, explain the theory and use of it to determine the ultrasonic velocity in a liquid. (2 + 8) (ii) Briefly outline the various industrial applications of ultrasonic waves. (6) 12. (a) (i) With a neat diagram, explain the construction and working of a (ii) CO2 laser. 28 Outline the use of lasers in heat treatment. (12) (4) Or (b) (i) Explain the principle, construction and working of a semiconductor diode laser with necessary diagrams. (12) 43 (ii) What are heterojunction lasers? Mention any two advantages of them. (2 + 2) 13. (a) (i) Define the numerical aperture of an optical fiber. Derive an expression for it. (2 + 8) (ii) Explain the double crucible method of drawing optical fiber with neat diagram. (6) Or 28 (b) (i) Discuss the mechanisms of attenuation, dispersion and bending losses in optical fibers. (10) (ii) Explain the principles of working of temperature and displacement sensors using optical fibers. (6)43 2 10004
  3. 3. 28 14. (a) Explain the theory of blackbody radiation due to Planck. Also discuss the limits of high temperature and low temperature of the result. (10 + 6) Or 43 (b) (i) Derive the time-dependent (1–D) Schr&&edinger equation from o fundamentals. (12) (ii) Find the change in wavelength of an X-ray photon which is scattered through an angle of 90o by an electron. (Planck’s constant = 6.62 × 10-34 Js; rest mass of electron = 9.1 × 10-31 kg; speed of light = 3 × 108 m/s). (4) 15. (a) (i) Write the standard crystal systems corresponding to with their lattice parameters. What are Bravias Lattices? (7) (ii) Explain the procedure to obtain the Miller indices of crystal planes. Also deduce a relation between Miller indices and the inter-planar distance. (3 + 6) (b) (i) 28 Or The density of BCC iron is 7860 kg/m3 and its atomic weight is 55.85. Calculate its atomic radius. (6) (Avogadro number = 6.023 × 1026/k mole) (ii) Deduce the c/a ratio and packing factor of standard HCP crystal. (10) 43 ————————— 2843 3 10004

×