Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Will social media advertising be a sustainable development marketing strategy 22.11.17 final

30 views

Published on

Capstone research by Yao Yang of University of Sydney

Published in: Environment
  • Be the first to comment

  • Be the first to like this

Will social media advertising be a sustainable development marketing strategy 22.11.17 final

  1. 1. Is  Social  Media  an  Environmental  Sustainable  Marketing  Strategy?   By   Yao   Yang   &   Wanting   Fu   of   University   of   Sydney   as   part   of   their   Masters   of   Sustainability  Programme  Capstone  Research  Project  2017.       The   Interactive   Advertising   Bureau   (IAB)   online   advertising   expenditure   report   (2016),  indicated  that  the  Australian  online  advertising  market  grew  from  $1.6  billion   in   2015   to   $6.8   billion   for   the   full   financial   year   ending   30   June   2016.   Online   advertising   is   developing   into   the   main   method   employed   by   the   advertising   industry.  To  achievement  their  marketing  goals  efficiency  companies  are  expected  to   create   and   produce   more   and   more   online   advertising   content,   utilize   the   latest   technology  which  in  turn  increases  the  amount  of  data  in  the  market.       In  a  survey  we  conducted  of  “customers’  attitudes  towards  online  advertising”,  the   results  show  that  a  lot  of  people  have  negative  emotions  about  internet  advertising,   such   as   traditional   banner   advertising,   static   banner   advertising,   and   pop-­‐up   advertising.   However,   respondents   have   a   more   neutral   attitude,   even   positive   attitude   towards   social   media   advertising.   Therefore   we   observed   an   increasing   number  of  marketers  focusing  on  social  media  marketing.     Nevertheless,   the   environmental   effect   of   online   advertising,   particularly   Greenhouse  Gas  (GHG)  emissions,  remains  uncertain.  Additionally,  many  customers   and   marketers   believe   that   internet   advertising   does   not   release   GHG   emissions;   however,  this  is  a  false  assumption.  The  will  question  that  needs  to  be  asked  is  will   social  media  advertising  be  an  environmentally  sustainable  marketing  strategy?  To   attempt  to  answer  this  question  let’s  example  the  two  of  the  elements  that  make   this  up:  data  usage  and  electricity  usage.     The  Formula  for  calculating  Carbon  Emissions  in  Social  Media  Advertising     Facebook  is  the  world’s  foremost  social  media  platform;  it  enjoys  higher  usage  time   per  person  than  any  other  social  media  application.  Therefore,  this  project  will  use   Facebook’s   advertising   business   for   this   research   (Facebook,   2017).   In   2016,   according   to   Facebook   their   total   carbon   footprint   was   718,000   metric   tonnes   of   carbon  dioxide  equivalent.  Offices  and  other  business  activity  accounted  for  28%  of   the  carbon  footprint.  The  other  72%  is  from  the  data  centres  (Facebook,  2017).     Facebook  currently  offers  several  different  advertising  formats,  such  as  photo,  video,   slideshow,   carousal,   collection,   canvas   and   lead   advertising.   The   most   popular   format  is  photo  advertising,  which  takes  the  form  of  one  image  plus  text.  The  size  of   the   image   is   1200  ×  628   pixels,   the   text   limit   is   90   characters   and   file   size   is   approximately  154  KB  (Social  Media  Image  Sizes  Cheat  Sheet,  2017).  We  calculate   that  when  customers  see  the  photo  advertising,  the  end  user  will  consume  190  KB  of   data.    
  2. 2.   According  to  the  methodology  from  The  Gaia  Partnership,  there  are  three  separate   activities  that  make  up  the  calculation  of  GHG  emissions:   1)  The  Design  and  Production  of  the  content.     2)  Storage  &  Delivery.   3)  Consumption  by  end  user.       The  average  quantity  of  carbon  in  a  1  MB  file  has  been  determined  by  Weber  et  al.   (2010)   and   Aslan   et   al.   (2017).   The   researchers   conclude   that   5g   carbon   dioxide   equivalent  is  released  when  customers  use  1MB  of  data.  The  intensity  of  emissions   for  internet  advertising  delivery  lies  in  the  range  of  256.28–  676.76  kg  carbon  dioxide   equivalent  per  million  impressions  (Taylor  &  Koomey,  2008).     Another  point  to  be  considered  is  electricity  usage.  On  average,  electricity  sources   emit   554   g   CO2  per   KWh   (Department   of   Energy’s   Energy   Information   Administration,  2017).  According  to  2016  Australian  Energy  Statistics,  the  medium   advertising  agency  will  consume  100  KWh  in  one  day,  and  producing  one  advertising   photo  will  use  an  average  15  KWh.     The  calculation  formula  is  as  follows:     Total  carbon  emissions  (photo  ads)    = 𝑓𝑖𝑙𝑒  𝑠𝑖𝑧𝑒  ×  5𝑔/𝑚𝑏   + 𝑖𝑛𝑡𝑒𝑟𝑛𝑒𝑡  𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦  ×  𝑛! + 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛  𝑏𝑦  𝑒𝑛𝑑  𝑢𝑠𝑒𝑟  ×  5𝑔/𝑚𝑏  ×  𝑛! + 𝑒𝑙𝑒𝑐𝑡𝑟𝑐𝑖𝑡𝑦  𝑢𝑠𝑒  ×  554𝑔/𝐾𝑊ℎ     n1  =  impression  number   n2  =  user  number     Thus,   when   one   customer   sees   the   photo   advertisement   8.312   kg   carbon   dioxide   equivalent   will   be   released,   and   this   quantity   increases   with   the   number   of   impressions,  viewers  and  electricity  usage.  By  the  time  that  1  million  people  have   seen  the  photo  advertisement,  1.425  tonnes  of  carbon  dioxide  equivalent  will  have   been  released.  In  terms  of  GHG  emissions,  this  is  the  equivalent  to  the  output  from   an  average  car  being  driven  non-­‐stop  for  2.31  days.     Although  in  this  example  we  have  only  considered  one  format,  other  social  media   advertising  formats  also  can  use  the  same  formula  to  calculate  carbon  emissions.     However,  one  thing  should  be  noted  is  that  this  value  may  not  be  precise,  and  will   alter  depending  on  various  factors.       For   example,   different   devices,   for   the   electricity   usage   calculation,   we   used   a   Greenhouse   Gas   Equivalencies   Calculator   to   do   the   on-­‐line   calculation,   which   is  
  3. 3. provided   by   The   United   States   Environmental   Protection   Agency   (EPA).   This   calculator  transforms  the  kilowatt  hours  of  electricity  to  the  metric  tons  of  carbon   dioxide  equivalent  in  the  USA.     First   of   all,   the   average   power   consumption   by   electronic   products   should   be   considered   clearly.   The   average   mobile   phone   consumes   one   kilowatt-­‐hour   of   electricity  per  two  hundred  and  fifty  hours,  and  the  computer  consumes  twice  as   much  electricity  every  three  hours  (Balasubramanian  et  al.,  2009).  It  means  every   hour   the   mobile   phone   consumes   0.0004   kilowatt-­‐hours   of   electricity,   while   the   computer  consumes  0.67.  Then,  using  the  EPA  calculator,  it  is  shown  that  the  use  of   mobile  phone  and  computer  will  produce  5g  and  500g  carbon  dioxide  respectively.     It  is  very  complicated  to  calculate  the  amount  of  electricity  generated  by  different   electronic   products   under   the   same   activity.   The   first   reason   is,   when   comparing   different   brands   or   the   same   brand   but   different   models   of   mobile   phone,   the   electricity  capacity  varies.  For  example,  the  electricity  capacity  of  the  iPhone6  and   iPhone6  +  are  1810  and  2915  mAh  respectively  (Singh,  2015).  Furthermore,  other   intricate  factors  also  need  to  be  factored  into  the  calculation,  such  as  the  standby   time   for   the   mobile   phone   and   the   internet   environment   (Bertoldi   et   al.,   2002).   Therefore,  for  different  electronic  products,  it  is  difficult  to  calculate  their  different   power   consumption   because   there   are   too   many   variable   factors   to   to   be   considered.     Additionally,  different  operating  system  will  consume  different  data  usage.  There  is  a   most  popular  social  app  in  China,  called  Wechat  (Xu  et  al.,  2015).  When  running  the   background  program  of  Wechat  for  an  hour  on  the  Android  or  Apple  system,  the   result  is  quite  different.  There  are  two  different  access  points  to  the  internet,  .NET   and  WAP  (Hinton  et  al.,  2011).  If  people  use  the  Apple  system,  no  matter  if  it  is  .NET   or   WAP,   the   data   usage   is   almost   zero.   If   they   use   the   Android   system,   .NET   will   consume  2.4KB  per  hour  and  WAP  will  consume  3~15KB  per  hour.  According  to  the   above   data,   it   is   clear   that   the   same   activity   will   produce   different   data   usage   in   different  systems,  therefore,  the  amount  of  carbon  dioxide  emissions  is  different.     When  considering  the  reasons  why  the  Android  system  will  consume  more  data  than   the  Apple  system,  it  can  be  explained  by  the  operation  and  management  mode  of   the  different  systems.  On  the  one  hand,  the  Android  system  being  an  open  source   system,  some  software  will  be  automatically  added  into  the  background  programs  so   the   data   usage   will   greatly   increase   (Wang   et   al.,   2011).   The   Apple   system   is   a   non-­‐open   source   system;   the   possibility   of   software   being   added   into   the   background   is   small.   On   the   other   hand,   the   Android   system   does   not   have   mandatory   and   unified   application   market   guidelines;   therefore   there   are   often   multiple   application   marketplaces.   When   an   app   needs   updating,   Android   phones   may  receive  various  push  notifications  from  different  application  markets,  therefore   producing  more  data  usages  (Wang  et  al.,  2011).  
  4. 4.   This  is  not  to  say  Apple  system  is  better  than  Android  system,  in  fact,  Android  system   will  not  consume  more  data  if  the  operation  style  is  operating  correctly.  There  are   some  areas  where  Android  users  could  adapt  to  improve  their  data  usage.  Firstly,   when  downloading  the  software,  it  is  better  to  choose  to  turn  off  some  unnecessary   push   information.   Secondly,   use   correct   specialist   apps   that   optimize   software   management  on  a  regular  basis.  Thirdly,  when  the  phone  is  not  in  operation,  turning   off  the  network  to  avoid  background  operations.     Recommendations  &  Solutions  for  the  Three  Different  Emission  emitting  activities   There   are   three   different   groups   to   target   to   reduce   carbon   emissions   caused   by   social  media  advertising.  These  are  i)  the  advertising  companies  who  create  social   media   marketing,   ii)   the   social   media   companies,   like   Facebook,   and   iii)   the   customers.     Firstly,  the  advertising  companies  who  generate  the  social  media  marketing  achieve   their  advertising  goals  by  selecting  the  right  type  of  content  for  the  right  audience.   They  need  to  capture  the  audience’s  attention  in  a  creative  manner  and  generate  a   satisfying   post-­‐click   experience   for   potential   customers.   It   is   most   important   that   they  measure  their  results.  The  data  that  is  collected  and  analysed  can  then  be  used   to  continuously  improve  the  communication  by  making  changes  to  their  campaign.   This  avoids  unnecessary  waste,  in  terms  of  both  budget,  data  usage  and  therefore   carbon  emissions.     Facebook  can  improve  its  GHG  output  by  adopting  wholly  renewable  energy  sources,   by  making  changes  to  its  data  centre  and  computing  efficiency.  Facebook  business  is   committed   to   powering   their   business   with   100%   clean   and   renewable   energy.   In   2015,  it  exceeded  its  stated  goal  of  reaching  25%  clean  and  renewable  energy  in  its   data  centre  electricity  supply  mix  (Facebook,  2017).  However,  Facebook  also  has  had   some  problems  with  building  renewable  energy  stations  where  the  public  may  not   allow   Facebook   to   build   a   renewable   energy   station   near   their   house.   So   this   transition  process  still  has  a  long  way  to  go.   Additionally,  some  online  functions  can  be  designed  to  reduce  GHG  emissions.  For   example,  Alipay  in  China,  which  is  similar  to  PayPal  in  Australia,  has  an  app  called   ‘Ant  Forest’.  Users  can  sign  up  to  a  "carbon  account"  that  measures  their  carbon   footprints.  Alipay  users  who  walk,  travel  by  subway,  pay  their  utilities  and  purchase   travel  tickets  online  and  adopt  other  green  actions,  will  earn  green  energy  points.   When  users  have  gathered  the  equivalent  of  17.9  kg  of  green  energy,  they  can  grow   a  virtual  tree  via  their  phone.  This  can  then  be  converted  to  a  real  Haloxylon  tree,   which  the  Ant  Forest  and  its  public  partners  plant  in  the  Alashan  in  Sinkiang,  west  of   China  and  it  is  named  after  the  user.  The  reason  for  setting  this  value  is  that  on   average,  a  Haloxylon  tree  can  absorb  17.9  kg  of  carbon  dioxide.  In  addition  to  
  5. 5. collecting  their  own  green  energy,  customers  can  also  ‘steal’  friends  green  energy  or   help  ‘water’  friends’  trees,  which  can  increase  the  green  energy  by  10g  per  watering.     The  "Ant  Forest"  project  has  been  in  place  with  Alipay  for  more  than  a  year.  It  uses   mobile  internet,  cloud  computing,  large  data  and  other  technologies  to  encourage   hundreds  of  millions  of  users  to  participate  in  a  greener  and  more  environmentally   friendly   way   of   life.   In   fact,   “Ant   Forest”   has   become   an   initiative   of   the   United   Nations  Environment  Program  promoting  global  green  financial  causes.     Caption:  the  real  planted  tree  in  Inner  Mongolia       Facebook   and   other   social   media   companies   could   incorporate   a   similar   kind   of   function  into  the  platform  to  offset  carbon  emissions,  and  encourage  customers  to   join  in  this  action,  too.     Customers  can  also  reduce  their  carbon  footprint  by  optimising   their   social   media   options   and   controlling   their   own   data   usage.   For   example,   turning   off   auto   play,   setting  the  advertising  to  only  display  items  of  interest  good  ways  to  avoid  wasting   data.     So   is   social   media   advertising   a   sustainable   development   marketing   strategy?   The   answer  should  be  NO.       However,   will   social   media   advertising   be   a   sustainable   development   marketing   strategy   in   the   future?   YES.   Measuring   the   effectiveness   of   online   advertising   still   presents  a  challenge.  According  research  and  surveys,  social  media  advertising  has   more  commercial  advantages  than  other  internet  advertising,  such  as  the  positive  
  6. 6. attitude  of  customers,  is  less  expensive  and  achieves  better  results  (Kim,  Kwon  &   Chang,  2011).  Consequently,  social  media  advertising  is  an  effective  way  to  market   online.  And  if  Facebook  or  other  social  media  companies  can  create  a  function  like   Ant  Forest,  customers  will  undertake  more  green  actions,  which  will  have  long-­‐term   social  and  environmental  effects  and  reinforce  the  corporate  image.     Finally,  the  marketing  organisation  should  build  an  understanding  of  GHG  emissions   from  social  media  advertising.  To  a  certain  extent,  the  above  recommendations  and   solutions  could  help  social  media  advertising  to  achieve  stronger  sustainability  and  a   circular  economy,  as  well  as  help  marketing  organisations  achieve  sustainable  online   marketing.     References     Aslan,   Joshua,   Kieren   Mayers,   Jonathan   G   Koomey,   and   Chris   France.   (2017).  Electricity   Intensity   of   Internet   Data   Transmission:   Untangling   the   Estimates.  In  Press  at  The  Journal  of  Industrial  Ecology:     February.     Australian  Government.  (2016).  office  of  the  chief  economist.  Retrieved  23  October   2017,   from   https://industry.gov.au/Office-­‐of-­‐the-­‐Chief-­‐Economist/Publications/Document s/aes/2016-­‐australian-­‐energy-­‐statistics.pdf   Balasubramanian,  N.,  Balasubramanian,  A.,  &  Venkataramani,  A.  (2009,  November).   Energy  consumption  in  mobile  phones:  a  measurement  study  and  implications   for  network  applications.  In  Proceedings  of  the  9th  ACM  SIGCOMM  conference   on  Internet  measurement  conference  (pp.  280-­‐293).  ACM   Bertoldi,  P.,  Aebischer,  B.,  Edlington,  C.,  Hershberg,  C.,  Lebot,  B.,  Lin,  J.,  ...  &  Siderius,   H.  P.  (2002).  Standby  power  use:  How  big  is  the  problem?  What  policies  and     Hinton,  K.,  Baliga,  J.,  Feng,  M.,  Ayre,  R.,  &  Tucker,  R.  S.  (2011).  Power  consumption   and  energy  efficiency  in  the  internet.  IEEE  Network,  25(2).   IAB   Australia.   (2016).   Online   advertising   spend   reaches   record   $6.8   billion   in   2016   financial  year  -­‐  IAB  Press  Releases.  Iabaustralia.com.au.  Retrieved  27  July  2017,   from   https://www.iabaustralia.com.au/news-­‐and-­‐updates/iab-­‐press-­‐releases/item/ 22-­‐iab-­‐press-­‐releases/2161-­‐online-­‐advertising-­‐spend-­‐reaches-­‐record-­‐6-­‐8-­‐billio n-­‐in-­‐2016-­‐financial-­‐year   Koomey,   J.   G.   (2008).   Worldwide   electricity   used   in   data   centers.  Environmental   research  letters,  3(3),  034008.   Koomey,   J.   G.,   Matthews,   H.   S.,   &   Williams,   E.   (2013).   Smart   everything:   Will   intelligent  systems  reduce  resource  use?.  Annual  Review  of  Environment  and   Resources,  38.   Our  Footprint  |  Facebook.  (2017).  Sustainability.fb.com.  Retrieved  23  October  2017,   from  https://sustainability.fb.com/our-­‐footprint/   Sewell,   C.   (2016).  Sustainability   and   the   hidden   cost   of   media   inefficiency.  Trinityp3.com.   Retrieved   27   July   2017,   from  
  7. 7. https://www.trinityp3.com/2016/05/sustainability-­‐and-­‐media-­‐inefficiency/   Singh,  P.  (2015).  iPhone  6s–Apple–Apple  iPhone  6s  Full  phone  specification,  release   date,  news  and  features|.   Social   Media   Image   Sizes   Cheat   Sheet   -­‐   Make   A   Website   Hub.   (2017).  Make   A   Website   Hub.   Retrieved   23   October   2017,   from   https://makeawebsitehub.com/social-­‐media-­‐image-­‐sizes-­‐cheat-­‐sheet/   Taylor,  C.,  &  Koomey,  J.  (2008).  Estimating  energy  use  and  greenhouse  gas  emissions   of  internet  advertising.  Network.   Wang,  C.,  Duan,  W.,  Ma,  J.,  &  Wang,  C.  (2011,  December).  The  research  of  Android   System  architecture  and  application  programming.  In  Computer  Science  and   Network  Technology  (ICCSNT),  2011  International  Conference  on  (Vol.  2,  pp.   785-­‐790).  IEEE.   Weber,   C.   L.,   Koomey,   J.   G.,   &   Matthews,   H.   S.   (2010).   The   energy   and   climate   change  implications  of  different  music  delivery  methods.  Journal  of  Industrial   Ecology,  14(5),  754-­‐769.   Xu,  J.,  Kang,  Q.,  Song,  Z.,  &  Clarke,  C.  P.  (2015).  Applications  of  mobile  social  media:   WeChat   among   academic   libraries   in   China.  The   Journal   of   Academic   Librarianship,  41(1),  21-­‐30.    

×