Lv1 bio beers pdf


Published on

Microfluidics Corp. Microfluidizers

Published in: Technology
  • Be the first to comment

Lv1 bio beers pdf

  1. 1. Introducing the new low volume Microfluidizer the LV1 small sample volume (1-20ml), high pressure (30KPSI) and near total sample recovery. Multiple systems scalable from 1 ml to gallons per minute. Perfect for R&D, discovery, discovery exploratory, small clinical studies, pilot scale right through to production scale systems
  2. 2. ` The new low voulme 1–20ml Microfluidizer the LV1 To learn more about the LV1 or the differences between the Microfluidizers, homogenizers and the French Press please go to and go to our Webinars Tab or continue with this presentation Bill Travers Manufacturer’s Representative Mobile: 410-746-0488 [email_address] Perfect for Nanoemulsions | Nanodispersions | Liposomes | Cell Disruption | Continuous Crystallization (Replace your obsolete French Press)
  3. 3. New from Microfluidics <ul><li>Don’t Worry – We Lowered the Volume </li></ul><ul><li>Samples as small as 1 mL </li></ul><ul><li>Same interaction chamber platform </li></ul><ul><li>Payback measured in days for high value samples </li></ul><ul><li>Near total sample recovery </li></ul><ul><li>Ideal for academic and biotechnology research </li></ul><ul><li>Fully scalable to larger lab, pilot and production </li></ul><ul><li>Shear rate at 30,000 psi: 1.23 X 10 7 s -1 </li></ul>
  4. 4. Discover the Difference: Microfluidizer ® Processors vs. Homogenizers, Sonicators and the French Press
  5. 5. Discussion Topics <ul><li>Microfluidizer ® Technology </li></ul><ul><ul><li>Highest shear </li></ul></ul><ul><ul><li>Narrow distribution </li></ul></ul><ul><ul><li>Scaleup guaranteed </li></ul></ul><ul><li>Particle Size Reduction vs. Homogenizers </li></ul><ul><ul><li>Particle size </li></ul></ul><ul><ul><li>Uniformity </li></ul></ul><ul><ul><li>Repeatability </li></ul></ul><ul><ul><li>Process efficiency </li></ul></ul><ul><ul><li>Customer Case Study: Corixa (now GSK) </li></ul></ul><ul><li>Cell Disruption vs. Sonicators and French Press </li></ul><ul><ul><li>Rupture rate </li></ul></ul><ul><ul><li>Protein yield </li></ul></ul><ul><ul><li>Temperature control </li></ul></ul><ul><ul><li>Ease of use </li></ul></ul><ul><li>Questions and Answers </li></ul>
  6. 6. Tiny Particles, Big Results <ul><li>Who We Are </li></ul><ul><li>Founded in 1983 outside Boston, MA </li></ul><ul><li>3,000 processors in 50 countries </li></ul><ul><li>Technology Center (virtual tour online) </li></ul><ul><li>Microfluidizer Processors </li></ul><ul><li>Uniform particle size reduction </li></ul><ul><li>Cell disruption with high protein recovery </li></ul><ul><li>Continuous crystallization of nanoparticles </li></ul>M-110P “plug n’ play” benchtop lab model M-110EH-30 pilot/production scale M-700 series for commercial production LV1 Low Volume (1 mL capable) processor Nanoemulsions | Dispersions | Liposomes | Cell Disruption | Deagglomeration | Continuous Crystallization
  7. 7. Heart of the Technology Fixed-Geometry Interaction Chamber - Microfluidics exclusive - Generates incredibly high shear and impact forces - Precisely engineered microchannels - Repeatable and scalable results - Diamond or ceramic construction More than Machines - Proof of Concept - Process Development - Preventive Maintenance - Safeguard Spares™ - Scaleup consulting - MRT Development
  8. 8. Applications and Benefits Pharmaceutical Biotechnology Chemical Energy More efficient catalysts and scaleable processes for fuel cells, batteries, photovoltaics and biofuels Cosmetics Brighter colors and controlled actives delivery for premium and natural lipsticks, hair sprays, clays, etc. Food/Nutraceuticals New ingredient flavors, time-release vitamins and encapsulated odors of nutrients such as Omega-3 Select Applications Proven Benefits Vaccines & adjuvants Improved bioavailability Oncology (injectables) Controlled drug delivery Asthma (inhalables) Sterile filtration Antibiotics Extended shelf life Steroids Continuous processing Select Applications Proven Benefits E. coli High rupture rates Yeast Maximized protein yield Algae Temperature control Mammalian Lower pressures/fewer passes Plant, insect, etc. No contamination Select Applications Proven Benefits Carbon nanotubes Uniform dispersions Inkjet inks Less energy required Coatings & sealants Consistent product quality Fine chemicals Easy to use and clean Polymers & waxes Agrochemicals
  9. 9. Our Customers Pharma/Biotech Chemical Food and Nutraceuticals Higher Education Over 150 Machines Sold in 2010 3M | Alcon Labs | Allergan | Aveda | BASF | Baxter | Center for Disease Control | Dana Farber General Mills | Max Planck Institute | MedImmune | Nektar Therapeutics | National Institute of Health PepsiCo. | RiteDose | SAIC | Scripps Research Institute | U.S. Army | U.S. Cosmetics | Yantai Spandex Plus dozens of universities as part of our global Academic Research Collaboration (ARC) program Cosmetic
  10. 10. Microfluidizer Technology How It Works
  11. 11. Microfluidizer Processor Schematic Inlet Reservoir Intensifier Pump Pressures up to 40,000 psi (276 MPa) Cooling Jacket Outlet Interaction Chamber Product
  12. 12. Interaction Chambers <ul><li>Specifications </li></ul><ul><li>No moving parts </li></ul><ul><li>Diamond or ceramic material </li></ul><ul><li>Shear rates up to 10 7 s -1 </li></ul><ul><li>Velocities over 400 m/s </li></ul><ul><li>Diameters 50-300 microns </li></ul><ul><li>“ Y” and “Z” shapes available </li></ul><ul><li>Controllable mixing to 25-50 nm </li></ul><ul><li>Demonstrated scalability </li></ul>On the Other Hand… Valve homogenizer systems use variable processing geometry, leading to inconsistent pressure, shear and results Z Chamber – Lab Z Chamber – Production High Shear Zones High Impact Zone Low Pressure Outlet P 2 High Pressure Inlet P 1 High Pressure Inlet P 1 High Shear Zone Low Pressure Outlet P 2 High Impact Zone
  13. 13. Shear Rates for Various Technologies Agitator Sawtooth Blade Closed Rotor Rotor-Stator Colloid Mill Homogenizer Microfluidizer Processor
  14. 14. Particle Size Reduction Vs. High Pressure Homogenizers
  15. 15. Under Pressure <ul><li>Pressure Profile Comparison </li></ul><ul><li>Homogenizers operate at peak pressure for mere moments (~7%) </li></ul><ul><li>Microfluidizers process effectively the entire product stream to the </li></ul><ul><li>desired pressure (and consistent shear) during each processing stroke </li></ul>
  16. 16. Oil-Water Emulsion Results <ul><li>Particle Size </li></ul><ul><li>At each pass, Microfluidizer </li></ul><ul><li>results are twice as small </li></ul><ul><li>Even after 5 passes, the </li></ul><ul><li>homogenizer can’t meet results </li></ul><ul><li>of a single Microfluidizer pass </li></ul><ul><li>Uniformity </li></ul><ul><li>Due to consistent shear, Microfluidizer </li></ul><ul><li>results are exceptionally narrow </li></ul><ul><li>Homogenizer displays larger particles </li></ul><ul><li>and higher variance – leading to a </li></ul><ul><li>less stable emulsion </li></ul>
  17. 17. <ul><li>Median particle size (D50) AFTER : 45 nm </li></ul>BEFORE AFTER AFTER O/W - Drug Nanoemulsion (Cancer Drug)
  18. 18. Before After 15 passes 0 p 1p 2p 3p 4p 5p 7p 10p 15p Process pressure : 18,000 psi (1241 bar) Chamber: F20Y (75 microns) Final product is translucent O/W - Drug Nanoemulsion (Cancer Drug)
  19. 19. Median = 0.075  m Median = 14.53  m Before After Emulsion: Oxygen Carrier (Perfluorocarbon) in a Cosmetic Application
  20. 20. Liposome Results Particle Size Consistent with emulsions, average particle sizes with Microfluidizer are approximately half the size Uniformity Variability advantages are even more pronounced here – the homogenizer sample contains multiple peaks Did You Know? Microfluidics was originally founded as a liposome producing company Microfluidizer Processor Leading Homogenizer Pass 1 113 nm 268 nm Pass 2 95 nm 228 nm Pass 3 72 nm 183 nm
  21. 21. Liposome: Anti-Oxidant – Vitamin C Median = 4.393  m Median = 0.195  m Before After
  22. 22. <ul><li>0.1% DNA plasmid solution was encapsulated inside a Palmitoyl oleoyl phosphatidyl choline liposome </li></ul><ul><li>DNA intact after processing </li></ul>DNA Encapsulation in a Liposome
  23. 23. Example – De-agglomeration Unprocessed 2 passes G10Z 30k
  24. 24. <ul><li>SWNTs* in high viscosity mineral oil </li></ul><ul><li>Application: Golf clubs </li></ul><ul><li>*From Carbon </li></ul><ul><li>Nanotechnologies Inc. </li></ul>Magnification 20,000x Carbon Nanotubes Dispersed in a Liquid Media Unprocessed 1 Pass H30Z-G10Z @ 158 MPa 10 Passes H30Z-G10Z @ 158 MPa 20 Passes H30Z-G10Z @ 158 MPa
  25. 25. Customer Success Story: Corixa (now GSK) Vaccine Adjuvant Nanoemulsion Based on these data, Corixa switched from their leading homogenization equipment to a Microfluidics-powered production environment       Critical Quality Criteria Leading Homogenizer Microfluidizer Average Particle Size 185 nm after 15 passes 141 nm after 3 passes Goal: <150 nm Polydispersity 43% above 200 nm 0.5% above 200 nm Goal: <10% above 200 nm Active Concentration 15% loss of actives 1% loss of actives Goal: <2% loss of actives 640 cm 2 17 cm 2 Microfluidics reduced filter area required by over 97%
  26. 26. Cell Disruption Vs. Sonicators and the French Press
  27. 27. Why is Cell Disruption Important? <ul><li>The generation of important enzymes, proteins and other products form microbes has been developed and used for the last 40 years </li></ul><ul><li>Cell rupture is required any time that products from cell sources must be removed from inside the cell </li></ul><ul><ul><li>Recombinant proteins are often grown in E. Coli or S. Cerevisiae which do not excrete proteins </li></ul></ul><ul><ul><li>Algae cells currently being used for biofuel generation must be lysed to access bio diesel precursor </li></ul></ul>
  28. 28. Shear Impact The Microfluidizer has the highest commercially available shear rates and can control pressure precisely for shear-sensitive applications Microfluidizer French Press Sonicator <ul><li>Precise shear control </li></ul><ul><li>Disrupt resilient cells </li></ul><ul><li>(e.g. yeast, algae) </li></ul><ul><li>More effective lysis of </li></ul><ul><li>shear-sensitive cells </li></ul><ul><li>(e.g. >99% of E. coli </li></ul><ul><li>with a single pass) </li></ul><ul><li>Lower levels of shear </li></ul><ul><li>generated even at </li></ul><ul><li>higher pressures </li></ul><ul><li>Has difficulty rupturing </li></ul><ul><li>tough cells </li></ul><ul><li>Requires more passes </li></ul><ul><li>for bacterial cells </li></ul><ul><li>Uses cavitation to generate </li></ul><ul><li>shear – typically much lower </li></ul><ul><li>than high pressure methods </li></ul><ul><li>Increasing shear results in </li></ul><ul><li>unwelcome higher processing </li></ul><ul><li>temperatures, as well </li></ul>
  29. 29. Keeping Your Cool One of the most important factors in maximizing protein yield and minimizing denaturing is product temperature Microfluidizer French Press Sonicator <ul><li>Cooling coils ensure </li></ul><ul><li>product comes out at a </li></ul><ul><li>low temperature </li></ul><ul><li>Low residence time </li></ul><ul><li>(~0.5s) within chamber </li></ul><ul><li>minimizes excessive </li></ul><ul><li>heating at any point </li></ul><ul><li>Cooling tray at output </li></ul><ul><li>minimizes denaturation </li></ul><ul><li>Heats samples during </li></ul><ul><li>processing – product </li></ul><ul><li>comes out hot </li></ul><ul><li>No native cooling </li></ul><ul><li>options </li></ul><ul><li>Collection vessel must </li></ul><ul><li>be manually iced to </li></ul><ul><li>limit high-temp </li></ul><ul><li>residence time </li></ul><ul><li>See thermal image, above </li></ul><ul><li>Cells near the tip experience </li></ul><ul><li>extreme temperatures </li></ul><ul><li>Cells further away remain cool </li></ul><ul><li>and potentially unlysed </li></ul><ul><li>Must be actively adjusted by </li></ul><ul><li>turning the system on and off </li></ul><ul><li>Keeping sample on ice does not </li></ul><ul><li>prevent localize overheating </li></ul>
  30. 30. Repeatability Controlling shear and pressure rates allows researchers to reduce energy and heat applied while achieving target rupture rates Microfluidizer French Press Sonicator <ul><li>Fixed-geometry </li></ul><ul><li>interaction chamber </li></ul><ul><li>and constant pressure </li></ul><ul><li>pumping system </li></ul><ul><li>ensure uniformity </li></ul><ul><li>Enables use of lowest </li></ul><ul><li>pressures and passes </li></ul><ul><li>possible to rupture </li></ul><ul><li>more cells </li></ul><ul><li>Depends on a manually </li></ul><ul><li>operated valve </li></ul><ul><li>Speed of human user’s </li></ul><ul><li>valve turn determines </li></ul><ul><li>actual applied shear </li></ul><ul><li>Not a trustworthy or </li></ul><ul><li>repeatable method </li></ul><ul><li>Relies on cavitation to generate </li></ul><ul><li>shear </li></ul><ul><li>Probe oscillation produces </li></ul><ul><li>widely variable </li></ul>
  31. 31. Commercial Viability Success in the lab is great – but doesn’t mean much to a business unless results are repeatable at production volumes Microfluidizer French Press Sonicator <ul><li>Microchannels align in </li></ul><ul><li>parallel applies </li></ul><ul><li>consistent shear to </li></ul><ul><li>samples ranging from </li></ul><ul><li>1 mL to 100 liters/minute </li></ul><ul><li>Process and scaleup </li></ul><ul><li>consulting enhances </li></ul><ul><li>efficiencies and reduce </li></ul><ul><li>passes for customers </li></ul><ul><li>Demonstrating viability </li></ul><ul><li>helps universities with </li></ul><ul><li>grant applications </li></ul><ul><li>Volume is limited to </li></ul><ul><li>lab-scale </li></ul><ul><li>That said, cannot </li></ul><ul><li>process small </li></ul><ul><li>samples, leading to </li></ul><ul><li>waste of materials </li></ul><ul><li>Batch processing restricts </li></ul><ul><li>volumes </li></ul><ul><li>Lack of repeatability </li></ul><ul><li>scaleup is impossible </li></ul>
  32. 32. Speed Limits Microfluidizers are designed to be easy to use and clean, with fewer passes required, to support busy lab research teams Microfluidizer French Press Sonicator <ul><li>Typically completes a </li></ul><ul><li>processing cycle in 90 sec </li></ul><ul><li>Includes cleaning </li></ul><ul><li>Requires fewer passes </li></ul><ul><li>Very slow drip process </li></ul><ul><li>regardless of sample </li></ul><ul><li>size – good for coffee, </li></ul><ul><li>bad for labs </li></ul><ul><li>An average cycle </li></ul><ul><li>lasts 30 minutes </li></ul><ul><li>Dangerous to clean – </li></ul><ul><li>head alone can weigh </li></ul><ul><li>30 lbs (14 kg) </li></ul><ul><li>Ranges from seconds to </li></ul><ul><li>several minutes per cycle </li></ul><ul><li>Cycle time is less predictable </li></ul><ul><li>due to the constant </li></ul><ul><li>monitoring and on/off </li></ul><ul><li>adjustment necessary to </li></ul><ul><li>prevent sample overheating </li></ul>
  33. 33. Additional Considerations <ul><li>Aeration – Difficult to remove oxygen from French press syringe. Product often creates froth or foam during loading </li></ul><ul><li>Sonic Boom – Sonicators are loud and are often operating in isolation. Even in a sound-enclosure, OHSA recommends ear protection, which may not guard against long-term ear damage </li></ul><ul><li>Ongoing Support – The French press is no longer manufactured or supported except by third-parties and is quickly becoming obsolete </li></ul>
  34. 34. Comparison to Other Mechanical Methods * Now available with the LV1 Microfluidizer processor Microfluidizer Homogenizer Bead Mill Continuous Yes Yes No Scalable Yes Limited Yes Optimal Temp Control Yes Yes No Contamination Free Yes Uncertain No Minimum Volume 1ml* 10 ml 1 ml Constant Shear Rate Yes No No Shear Rate Potential Highest High Medium
  35. 35. BEFORE AFTER Process pressure : 18,000 psi (1241 bar) Chamber: H10Z (100 microns) Shear rate: 5.58 X 10 6 s -1 E. Coli Microfluidics users typically rupture >99% of E. coli cells in a single pass
  36. 36. Yeast Lysis ( S. Pombe ) Unprocessed 1 pass ~60% lysis 5 passes ~95% lysis 10 passes ~99% lysis Process conditions : 30,000 psi (2070 bar) Chamber: G10Z (87 microns) Shear rate per pass: 6.94 X 10 6 s -1 Microfluidizers are tough on cells (even yeast) and gentle on proteins
  37. 37. Lysis of Haploid S. Pombe on 110EH – 30,000 psi <ul><li>The maximum recovery of soluble protein is achieved at 5 passes </li></ul><ul><li>Further passes appear to cause more protein to denature than are liberated by the additional lysis </li></ul>
  38. 38. Mammalian, Plant and Insect Cells <ul><li>Example: Mammalian </li></ul><ul><li>Performed for NC State University Gene Therapy Center to release viral vectors </li></ul><ul><li>from human embryonic kidney cells </li></ul><ul><ul><li>Cells processed with the Microfluidizer processor for 1 pass yielded expected amount of protein </li></ul></ul>Before - Unprocessed After - 1 Pass Process conditions : 1 pass at 5000 psi (535 bar) Chamber: H30Z (200 microns) Shear rate: 1.40 X 10 6 s -1 <ul><li>Used to produce more complicated proteins (do not require post translational </li></ul><ul><li>modifications) </li></ul><ul><li>Require much lower shear rates </li></ul>
  39. 39. Algae Cells <ul><li>As the supply of fossil fuels diminishes, the need for renewable fuel sources will increase </li></ul><ul><li>Biofuels from algae cells are appealing because they grow quickly and can directly convert CO 2 to longer chain oils which can be easily converted to biodiesel </li></ul><ul><li>Cells must be ruptured in order to gain access to oil </li></ul><ul><li>There is a wide variety of algal cells which all require different shear rates to rupture </li></ul>
  40. 40. Algae Cell Disruption Example #1 Process conditions : 1 passes 10,000 psi (690 bar) Chamber: H10Z (100 microns) Shear rate: 4.14 X 10 6 s -1
  41. 41. BEFORE AFTER Process conditions : 3 passes 20,000 psi (1380 bar) Chamber: G10Z (87 microns) Shear rate: 6.09 X 10 6 s -1 Algae Cell Disruption Example #2
  42. 42. Microfluidizer Processors – Summary of Benefits <ul><li>Proven Results </li></ul><ul><ul><li>Highest possible shear </li></ul></ul><ul><ul><li>Fixed-geometry interaction chamber </li></ul></ul><ul><ul><li>Less energy & fewer passes </li></ul></ul><ul><ul><li>Easy to use and clean </li></ul></ul><ul><ul><li>Scaleup guaranteed </li></ul></ul><ul><li>Particle Size Reduction </li></ul><ul><ul><li>Smallest particle sizes </li></ul></ul><ul><ul><li>Most narrow distribution </li></ul></ul><ul><ul><li>Targeted actives delivery </li></ul></ul><ul><ul><li>Simplified downstream processing & less filter area </li></ul></ul><ul><li>Cell Disruption </li></ul><ul><ul><li>Single processor capable of E. Coli, Yeast and Algae </li></ul></ul><ul><ul><li>High protein recovery </li></ul></ul><ul><ul><ul><li>Temperature control </li></ul></ul></ul><ul><ul><ul><li>Low residence time </li></ul></ul></ul><ul><ul><ul><li>Controlled shear (lower pressures required) </li></ul></ul></ul><ul><ul><li>No contamination </li></ul></ul><ul><ul><li>1 mL sample volumes available with the new LV1 </li></ul></ul>
  43. 43. Thank You for Your Time <ul><li>Two Ways to Ask Questions </li></ul><ul><li>New! Raise your virtual hand & we’ll un-mute you so you can talk live </li></ul><ul><li>Type your question into the chat field and we’ll ask it for you </li></ul><ul><li>Current Promotions - 5% discount on LV1 in 2010 (Promotion Code: LV1-2010 ) - Up to 15% off interaction chambers in 2010 (Promotion Code: CHAMBERS10 ) </li></ul><ul><li>Customers! Visit the Customer Center or for referrals, news and more </li></ul><ul><li>Plus, Over 50 Questions in the Queue… </li></ul>Nanoparticles Cell Lysis Applications Technology LV1 <ul><li>Emulsion success criteria </li></ul><ul><li>Maximizing stability </li></ul><ul><li>Shear alters compound? </li></ul><ul><li>Smallest possible size? </li></ul><ul><li>Water-insoluble APIs </li></ul><ul><li>Extending shelf life </li></ul><ul><li>Large-scale capabilities </li></ul><ul><li>Pretreatment </li></ul><ul><li>Insect cells </li></ul><ul><li>System running dry </li></ul><ul><li>Cellulosic materials </li></ul><ul><li>IV formulations </li></ul><ul><li>CNT’s </li></ul><ul><li>Coatings </li></ul><ul><li>Pigment dispersion </li></ul><ul><li>Polysaccharide size </li></ul><ul><li>Diatom processing </li></ul><ul><li>Range of viscosity limits </li></ul><ul><li>Reliability </li></ul><ul><li>Expected chamber life </li></ul><ul><li>Heat Microfluidizer? </li></ul><ul><li>5-10mL samples in 1 hr? </li></ul><ul><li>Flammable liquids </li></ul><ul><li>Product recovery </li></ul><ul><li>Cooling efficiency </li></ul><ul><li>Throughput </li></ul>