Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Hypoxia and oxygen therapy 3


Published on

Published in: Health & Medicine, Business

Hypoxia and oxygen therapy 3

  3. 3. SYMPTOMS OF HYPOXIA <ul><li>DEPEND ON: </li></ul><ul><li>RAPIDITY AND SEVERITY </li></ul><ul><li>OF THE </li></ul><ul><li>DECREASE OF ARTERIAL Po2 </li></ul>
  4. 4. <ul><li>1) FULMINANT hypoxia </li></ul><ul><li>(Arterial Po2<20mmHg) </li></ul><ul><li>(eg.aircraft loses cabin pressure above 30,000 feet and no supplemental O2 available) </li></ul><ul><li>Occurs in seconds Unconsciousness in 15-20 sec </li></ul><ul><li>Brain death in 4-5 min </li></ul><ul><li>2) ACUTE hypoxia </li></ul><ul><li>(25mmHg<Arterial Po2<40mmHg) </li></ul><ul><li>(eg.altitudesof 18,000-25,000 feet) </li></ul><ul><li>Symptoms similar to those of ethyl alcohol(lack of coordination,slowed reflexes,overconfidence) </li></ul><ul><li>Unconsciousness </li></ul><ul><li>Coma and death(in minutes to hours) </li></ul><ul><li>if the regulatory mechanisms of the body are inadequate </li></ul>eventually
  5. 5. <ul><li>3) CHRONIC hypoxia </li></ul><ul><li>(40mmHg<Arterial Po2<60mmHg) </li></ul><ul><li>( altitudes of 10,000-18,000 feet for extended periods of time) </li></ul><ul><li>FOR EXTENDED PERIODS OF TIME!!! </li></ul><ul><li>Most clinical causes of hypoxia are in these category </li></ul><ul><li>Symptoms similar to those of severe fatigue </li></ul><ul><li>DYSPNEA </li></ul><ul><li>SHORTNESS OF BREATH </li></ul><ul><li>+ </li></ul><ul><li>RESPIRATORY ARRHYTHMIAS </li></ul>
  6. 6. SIGNS OF HYPOXIA <ul><li>1. Cyanosis (bluish color of tissue) </li></ul><ul><li>caused by more than 5g of deoxyhemoglobin/dl in capillary blood(or less than 13ml O2 per 100ml of blood) </li></ul><ul><li>NOT RELIABLE SIGN OF HYPOXIA!!! </li></ul><ul><li>ANEMIC PATIENTS never develop </li></ul><ul><li>cyanosis but are extremely hypoxic </li></ul><ul><li>PATIENTS WITH POLYCYTHEMIA may be </li></ul><ul><li>cyanotic but they are perfectly oxygenated </li></ul><ul><li>Tachycardia </li></ul><ul><li>(peripheral chemoreceptor reflex response to Po2 ) </li></ul><ul><li>3. Tachypnea and Hyperpnea (arterial chemoreceptor reflex response to Po2 ) </li></ul>
  8. 8. ARTERIAL(HYPOXIC) HYPOXIA <ul><li>RESULTS FROM: </li></ul><ul><li>INADEQUATE OXYGENATION OF THE ARTERIAL </li></ul><ul><li>BLOOD </li></ul><ul><li>CAUSED BY: </li></ul><ul><li>Breathing gas with Po2 </li></ul><ul><li>One or more pathophysiologic mechanisms: </li></ul><ul><li>a) HYPOVENTILATION (not adequate alveolar ventilation) </li></ul><ul><li>alveolar and arterial Po2 alveolar and arterial Pco2 </li></ul><ul><li>Hypercapnia </li></ul><ul><li>so </li></ul><ul><li>b)DIFFUSION LIMITATION </li></ul><ul><li>(diffusion capacity of lungs decreased by a pulmonary disease) </li></ul>
  9. 9. <ul><li>c) PHYSIOLOGIC SHUNTS [ V A /Q imbalance ] </li></ul><ul><li>most common cause of hypoxia </li></ul><ul><li>d) ANATOMIC SHUNTS (mixing of venous and oxygenated(arterial)blood which dicreases the Po2) </li></ul><ul><li>normally there is an anatomic shunt of about 3% of the cardiac output caused by the mixing of the oxygenated blood coming from the lungs with the venous blood of bronchial veins before entering the left atrium </li></ul><ul><li>Pathologically is caused by congenital cardiac malformations </li></ul><ul><li>diagnosis: arterial Po2<500mmHg when breathing 100% O2 </li></ul>
  10. 10. Po2(mmHg) O2 in blood(volumes %) ARTERIAL(HYPOXIC)HYPOXIA Arterial Po2 Venous Po2
  11. 11. STAGNANT(ISCHEMIC) HYPOXIA <ul><li>RESULTS FROM: </li></ul><ul><li>INADEQUATE BLOOD FLOW </li></ul><ul><li>entire body or localized area </li></ul><ul><li>caused by </li></ul><ul><li>Congestive heart failure Arteriosclerosis </li></ul><ul><li>Arterial Po2 may be normal BUT because Q (blood flow),tissues withdraw larger amounts of O2 from the blood ,so, Venous Po2 </li></ul>
  12. 12. Po2(mmHg) O2 in blood(volumes %) STAGNANT(ISCHEMIC)HYPOXIA Arterial Po2 Venous Po2 BUT
  13. 13. ANEMIC HYPOXIA <ul><li>RESULTS FROM: </li></ul><ul><li>INSUFFICIENT AMOUNT OF FUNCTIONAL HEMOGLOBIN </li></ul><ul><li>CAUSED BY: </li></ul><ul><li>1) Deficiency of essential nutrients(iron,B12 vitamin) </li></ul><ul><li>2) Blood loss </li></ul><ul><li>Patients with Anemic hypoxia have reduced O2 capacity so they have </li></ul><ul><li>reduced content of O2 in their blood </li></ul><ul><li>Arterial Po2is Normal but Venous Po2 </li></ul>
  14. 14. ANEMIC HYPOXIA Po2(mmHg) O2 in blood(volumes %) Arterial Po2 BUT Venous Po2
  15. 15. HISTOTOXIC HYPOXIA <ul><li>RESULTS FROM: </li></ul><ul><li>DISABILITY OF CELLS TO USE O2 </li></ul><ul><li>CAUSED BY: </li></ul><ul><li>1) INACTIVATION OF CERTAIN METABOLIC ENZYMES </li></ul><ul><li>2) CHEMICAL POISONS </li></ul><ul><li>Tissues are unable to use O2 so Venous Po2 </li></ul>
  16. 16. HISTOTOXIC HYPOXIA Po2(mmHg) O2 in blood(volumes %) Arterial Po2 Venous Po2 BUT
  17. 17. SUMMARY Effect of 100% O2 Arterial Po2 during exercise Arterial Pco2 Venous Po2 Arterial Po2 TYPE OF HYPOXIA ARTERIAL HYPOXIA dissolved O2 HISTOTOXIC HYPOXIA dissolved O2 ANEMIC HYPOXIA dissolved O2 STAGNANT HYPOXIA Arterial Po2<500mmHg Anatomic shunt Arterial Po2>600mmHg Physiologic shunt Arterial Po2>600mmHg Diffusion limitation Arterial Pco2 Hypoventilation
  18. 18. OXYGEN THERAPY <ul><li>Oxygen is required for aerobic metabolism to produce biological energy </li></ul><ul><li>With inadequate oxygenation, anaerobic metabolism sets in ->-> decreased energy and acidosis </li></ul><ul><li>Oxygen therapy is thus required whenever tissue oxygenation is impaired, to allow metabolic reactions to occur and to prevent complications of hypoxemia </li></ul>
  19. 19. AARC CLINICAL PRACTICE GUIDELINES <ul><li>INDICATIONS: </li></ul><ul><li>Documented hypoxemia </li></ul><ul><li>Severe trauma </li></ul><ul><li>Acute MI </li></ul><ul><li>Acute care situations leading to hypoxemia </li></ul><ul><li>Short term therapy e.g. post anesthesia recovery </li></ul><ul><li>CONTRAINDICATION: </li></ul><ul><li>none specific when indications are present </li></ul>
  20. 20. Oxygen Delivery System: Design and Performance. <ul><li>4 basic designs exist </li></ul><ul><li>Low flow,Reservoir,High flow and Enclosures. </li></ul><ul><li>Clinical performance is more important than the design. </li></ul><ul><li>Two key questions are important : Fio2 range and whether the Fio2 remains fixed or variable. </li></ul>
  21. 21. <ul><li>LOW FLOW SYSTEMS : Fio2 less than 35%. </li></ul><ul><li>MODERATE : Fio2 between 35% to 60%. </li></ul><ul><li>High flow : Fio2 more than 60%. </li></ul><ul><li>Fixed or variable Fio2 depends on how much of the patients inspired gas the system supplies. </li></ul>
  22. 22. FIXED AND VARIABLE PERFORMANCE SYSTEM <ul><li>Fixed performance system provides a stable Fio2. </li></ul><ul><li>Variable performance system -Inspired gas is a mixture of the delivered O2 diluted with a variable amount of air. </li></ul><ul><li>The more the patient breathes the more air dilutes the delivered O2 and lower is the Fio2. </li></ul><ul><li>The Fio2 provided varies from min to min and even from breath to breath. </li></ul>
  23. 23. <ul><li>LOW FLOW SYSTEMS : Variable performance system. </li></ul><ul><li>RESERVOIR SYSTEM : Can function as a fixed performance system. </li></ul><ul><li>The reservoir volume must exceed the patients tidal volume and no air leaks should be present. </li></ul><ul><li>HIGH FLOW SYSTEM : Fixed performance system. </li></ul>
  24. 24. LOW FLOW SYSTEMS <ul><li>O2 delivered is always less than the patients inspired flow(8L/min or less). </li></ul><ul><li>The remaining inspired flow comes from the atmospheric air,diluting the delivered O2. </li></ul><ul><li>Thus they are Variable performance system. </li></ul>
  25. 25. Types of low flow delivery systems. <ul><li>NASAL CANNULA : small bore oxygen supply tube connected to two short prongs(approx 1cm long). </li></ul><ul><li>Prongs are inserted to the patients nares and supply tubing either directly to the flow meter or bubble humidifier. </li></ul><ul><li>Humidifier is used only if the input flow exceeds 4L/min. </li></ul>
  26. 26. <ul><li>Fio2 range is between 22% to 45%. </li></ul><ul><li>Flows greater than 6 to 8L/min can cause patient discomfort including dryness and bleeding. </li></ul><ul><li>In newborns and infants flows should be 2L/min or less. </li></ul>
  27. 27. DISADVANTAGES OF NASAL CATHETER <ul><li>They are unstable,easily dislodged. </li></ul><ul><li>High flows are uncomfortable ; can cause dryness,bleeding;even when they are used with a humidifier. </li></ul><ul><li>Deviated septum,polyps,mouth breathing may reduce Fio2. </li></ul>
  28. 28. <ul><li>Best used in the stable patients who need low Fio2. </li></ul><ul><li>Home care patient who needs long term therapy,low to moderate Fio2 while eating. </li></ul><ul><li>Advantages: low cost, disposable,well tolerated. </li></ul><ul><li>Easy to use in adults,children,infants. </li></ul>
  29. 29. ESTIMATED FiO2 WITH NASAL CANNULA <ul><li>1L/min - .24 </li></ul><ul><li>2L/min - .28 </li></ul><ul><li>3L/min - .32 </li></ul><ul><li>4L/min - .36 </li></ul><ul><li>5L/min - .40 </li></ul><ul><li>Rule of thumb- for patients with normal rate and depth of breathing,each litre per min of nasal oxygen increases the Fio2 by 4%. </li></ul>
  30. 30. NASAL CATHETHER <ul><li>Soft plastic tube with several holes at the tip. </li></ul><ul><li>Inserted by advancing along the floor of either nasal passage and visualizing it just behind and above the uvula. </li></ul><ul><li>Once in position it is taped to the bridge of the nose. </li></ul><ul><li>Can be inserted to a depth equal to the distance from the nose to the tragus of either ear. </li></ul>
  31. 31. <ul><li>Flow – ¼ to 8L/min. </li></ul><ul><li>Fio2 range – 22% to 45%. </li></ul><ul><li>Variable performance system. </li></ul><ul><li>Low cost ,good stability,disposable. </li></ul><ul><li>Best used in the procedures in which cannula is difficult to use(bronchoscopy). </li></ul><ul><li>Long term care of infants. </li></ul>
  32. 32. DISADVANTAGES OF NASAL CATHETER <ul><li>Difficult to insert. </li></ul><ul><li>High flow increases back pressure. </li></ul><ul><li>Needs regular changing(at least every 8hrs). </li></ul><ul><li>Polyps,deviated septum can may block insertion. </li></ul><ul><li>May provoke gagging,air swallowing,aspiration. </li></ul>
  33. 33. TRANSTRACHEAL CATHETER <ul><li>First described by Hemlich in 1982. </li></ul><ul><li>Teflon catheter with a guide wire which is inserted directly into the trachea between the 2 nd and 3 rd tracheal rings. </li></ul><ul><li>Custom sized chain necklace secures the catheter in position. </li></ul><ul><li>No humidifier is needed as the flow is low. </li></ul>
  34. 34. <ul><li>Flow – ¼ to 4L/min. </li></ul><ul><li>Fio2 range is 22% to 35%. </li></ul><ul><li>Variable performance system. </li></ul><ul><li>Lower oxygen use and cost. </li></ul><ul><li>Eliminates nasal and skin irritation;improved compliance. </li></ul><ul><li>Increased exercise tolerance,enhanced image. </li></ul>
  35. 35. DISADVANTAGES <ul><li>High cost </li></ul><ul><li>Surgical complications </li></ul><ul><li>Infection,mucus plugging,lost tract. </li></ul><ul><li>Best used in home care and ambulatory patients needing increased mobility. </li></ul><ul><li>Those who dont accept nasal oxygen. </li></ul>
  36. 36. Variables affecting the Fio2 of low flow oxygen systems. <ul><li>Increased Fio2 : </li></ul><ul><li>Higher O2 input,mouth closed breathing(cannula only). </li></ul><ul><li>Low inspiratory flow and low tidal volume,high I:E ratio. </li></ul><ul><li>Slow rate of breathing and small minute ventilation. </li></ul><ul><li>Long inspiratory time. </li></ul>
  37. 37. DECREASED FiO2 <ul><li>Lower O2 input </li></ul><ul><li>Mouth open breathing. </li></ul><ul><li>High inspiratory flow and high tidal volume. </li></ul><ul><li>Fast rate of breathing. </li></ul><ul><li>Large minute ventilation,short inspiratory time. </li></ul><ul><li>Low I:E ratio. </li></ul>
  38. 38. RESERVOIR SYSTEMS <ul><li>They incoporate a mechanism for gathering and storing oxygen between patients breaths. </li></ul><ul><li>They extend the anatomic reservoir thus further increasing the Fio2. </li></ul><ul><li>Air dilution is reduced and hence higher Fio2 is provided. </li></ul>
  39. 39. RESERVOIR CANNULAS <ul><li>Designed to conserve oxygen. </li></ul><ul><li>FLOW : ¼ TO 4L/min. </li></ul><ul><li>FiO2 range- 22% to 35%. </li></ul><ul><li>Variable performance system. </li></ul><ul><li>Lower oxygen use and cost,increased mobility. </li></ul><ul><li>Less discomfort because of lower flow. </li></ul>
  40. 40. <ul><li>RESERVOIR CANNULAS : Nasal reservoir and pendant reservoir. </li></ul><ul><li>Nasal reservoir cannula stores approx 20 ml of oxygen in a small membrane reservoir during exhalation. </li></ul><ul><li>The patient draws on this stored oxygen during early inspiration. </li></ul><ul><li>The amount of O2 available increases with each breath. </li></ul>
  41. 41. PENDANT RESERVOIR <ul><li>The reservoir is hidden under the patients clothing on the anterior chest wall. </li></ul><ul><li>The device is less visible but the extra weight of the pendant can cause ear and facial discomfort. </li></ul>
  42. 42. DISADVANTAGES OF RESERVOIR CANNULAS <ul><li>They are unattractive,cumbersome. </li></ul><ul><li>Poor compliance. </li></ul><ul><li>Must be regularly replaced(every 3 weeks). </li></ul><ul><li>Breathing pattern affects performance. </li></ul><ul><li>Best used in home care or ambulatory patients who need increased mobility. </li></ul>
  43. 43. RESERVOIR MASKS <ul><li>Most commonly used reservoir systems. </li></ul><ul><li>3 main types : </li></ul><ul><li>Simple mask. </li></ul><ul><li>Partial rebreathing mask. </li></ul><ul><li>Non rebreathing mask. </li></ul>
  44. 44. SIMPLE FACE MASK <ul><li>Basic reservoir system. </li></ul><ul><li>Flow : 5 – 12L/min </li></ul><ul><li>Fio2 – 35% - 50% </li></ul><ul><li>Variable performance system. </li></ul><ul><li>Flow rate must exceed 5L/min to replace exhaled gas with fresh oxygen otherwise rebreathing of CO2 will occur. </li></ul>
  45. 45. SIMPLE FACE MASK <ul><li>Disposable plastic unit designed to cover both the mouth and the nose. </li></ul><ul><li>Gathers and stores O2 between the patients breaths. </li></ul><ul><li>The patient exhales directly through open holes or ports in the mask body. </li></ul><ul><li>If O2 input flow cease,the patient can draw in air through these holes and around the mask edge. </li></ul>
  46. 46. Advantages and Disadvantages <ul><li>Advantages : quick,easy to apply, disposable, inexpensive. </li></ul><ul><li>Disadvantages : uncomfortable,must be removed for eating. </li></ul><ul><li>Prevents radiant heat loss. </li></ul><ul><li>Blocks vomitus in unconscious patient. </li></ul><ul><li>Best used in emergencies,short term therapy requiring moderate FiO2. </li></ul>
  47. 47. ESTIMATED FiO2 WITH FACE MASK <ul><li>5 – 6L/min - .40 </li></ul><ul><li>6 – 7 L/min- .50 </li></ul><ul><li>7 – 8 L/min - .60 </li></ul>
  48. 48. PARTIAL REBREATHING MASK AND NON REBREATHING MASK <ul><li>Both have got the similar design. </li></ul><ul><li>Each has a 1 L flexible reservoir bag attached to the oxygen inlet. </li></ul><ul><li>The bag increases the reservoir volume and hence provide higher FiO2 than face mask. </li></ul><ul><li>The key difference between these designs is the use of valves. </li></ul>
  49. 49. <ul><li>Partial rebreather has no valves. </li></ul><ul><li>O2 flows into the mask during inspiration and passes directly to the patient. </li></ul><ul><li>During exhalation, source O2 enters the bag. </li></ul><ul><li>Since there is no valves, some of the patients exhaled gas also enters the bag( approx first one third). </li></ul><ul><li>It contains mainly O2 and little CO2. </li></ul>
  50. 50. <ul><li>The last two thirds of exhalation escapes out the exhalation ports of the mask. </li></ul><ul><li>CO2 rebreathing is negligible as long the O2 input flow keeps the bag from collapsing. </li></ul><ul><li>Flow – 6 -10L/min </li></ul><ul><li>Fio2 range – 35% - 60%. </li></ul><ul><li>Variable performance system. </li></ul>
  51. 51. NONREBREATHING MASK <ul><li>It prevents rebreathing with one way valves. </li></ul><ul><li>An inspiratory valve sits atop the bag,expiratory valves cover the exhalation ports on the mask body. </li></ul><ul><li>During inspiration,the valve atop the bag opens providing O2. </li></ul><ul><li>The expiratory valves close due to the negative pressure preventing air dilution. </li></ul>
  52. 52. <ul><li>During exhalation,slight positive pressure closes the inspiratory valve which prevents exhaled gas from entering the bag. </li></ul><ul><li>Concurrently the one way expiratory valves open and divert exhaled gas out. </li></ul><ul><li>Flow – 6 to 10L/min </li></ul><ul><li>FiO2 Range – 55% to 70% </li></ul><ul><li>Variable performance system. </li></ul>
  53. 53. <ul><li>Large air leaks the major problem. </li></ul><ul><li>Air leakage occurs both around the mask body and through the exhalation port. </li></ul><ul><li>The open exhalation port is common safety feature. </li></ul><ul><li>This also causes air dilution. </li></ul>
  54. 54. NON REBREATHING RESERVOIR CIRCUIT <ul><li>Basically a CLOSED SYSTEM. </li></ul><ul><li>Blending system premixes air and O2;full range of FiO2 is provided. </li></ul><ul><li>The gas mixture is warmed and humidified and flows into an inspiratory volume reservoir. </li></ul><ul><li>The patient breathes through the closed airway appliance such as a mask with one way valve. </li></ul>
  55. 55. <ul><li>A valved T tube can also be used in the care of a patient with an endotracheal or tracheostomy tube. </li></ul><ul><li>FLOW – 3 times Ve.( prevent bag collapse on inspiration). </li></ul><ul><li>FiO2 range – 21% to 100%. </li></ul><ul><li>Fixed performance system. </li></ul><ul><li>Main advantage – provides full range of FiO2. </li></ul>
  56. 56. <ul><li>Disadvantage – potential suffocation hazard,blender failure is common. </li></ul><ul><li>Best used in patients who need precise FiO2 at any level(21% to 100%). </li></ul>
  57. 57. <ul><li>FIXED PERFORMANCE SYSTEMS </li></ul><ul><li>(Fio 2 is independent of patient factors) </li></ul><ul><li>HIGH-FLOW VENTURI MASK </li></ul><ul><li>These masks give an accurate Fio 2 which depends on their construction & the O 2 flow rate (which is written on the mask with the O 2 percentage </li></ul>
  58. 58. <ul><li>They are colour-coded & acc. ‘Bernoulli’ principle </li></ul><ul><li>However, these masks may not deliver the intended Fio 2 if severe dyspnoea is present </li></ul><ul><li>FiO 2 is increaqsed by increasing the size of jet orifice or decreasing the size of side ports , both of which decrease the amount of room air entrained. </li></ul>
  59. 59. <ul><li>Advantages </li></ul><ul><li>- delivery of predictable FiO 2 </li></ul><ul><li>-useful in patients in whom delivery of excessive oxygen could depress the respiratory drive </li></ul><ul><li>Disadvantages </li></ul><ul><li>- limited access for eating ,drinking ,expectorating </li></ul><ul><li>-claustrophobia </li></ul><ul><li>-irritation to eyes because of high flow rates </li></ul>
  60. 60. Approximate O 2 concentration related to flow rates of semi venturi devices Twice o 2 flow 1:1 12 0.60 32 3:1 8 0.40 48 5:1 8 0.35 66 10:1 6 0.28 104 25:1 4 0.24 Total gas Flow (l/min) Air:oxygen entrainment Flow rate (l/min) FiO 2
  61. 61. <ul><li>TRACHEOSTOMY MASKS </li></ul><ul><li>These are small plastic masks placed over the tracheostomy tube or stoma </li></ul><ul><li>The pt will inspire less O 2 than delivered, as dilution by room air occurs </li></ul><ul><li>Otherwise, they perform similarly to simple facemask </li></ul>
  62. 62. <ul><li>FACE TENT </li></ul><ul><li>This is a large, semi-rigid plastic half mask which wraps around the chin & cheeks </li></ul><ul><li>The O 2 mixture is delivered from the bottom of the mask & the gases are exhaled through the open upper part. </li></ul><ul><li>It is used to provide added humidification from a heated humidifier </li></ul><ul><li>Otherwise it has no advantages over the simple facemask </li></ul>
  63. 63. <ul><li>O 2 HEADBOX </li></ul><ul><li>O 2 is delivered into a box encasing the child’s neck </li></ul><ul><li>The Fio 2 depends on the fresh gas flow, size of box, </li></ul>
  64. 64. <ul><li>It is a useful method in infants & small children, but high flow rates should be supplied & monitoring of O 2 concentration near the face is essential </li></ul><ul><li>INCUBATOR </li></ul><ul><li>It provide O 2 as well as a neutral thermal environment </li></ul><ul><li>Pt access & recovery of O 2 concentration after opening incubator are problems </li></ul>
  65. 65. HYPERBARIC O 2 THERAPY <ul><li>HBO therapy is indicated in compromised O 2 carrying capacity of Hb (e.g in CO poisoning) or if extra tissue O 2 is required (e.g severe burns & tissue infection) </li></ul><ul><li>This uses the ability of plasma & tissue fluid to accept an increased amount of O 2 that is dissolved under pressure </li></ul><ul><li>HBO therapy delivers 100% O 2 at a pressure above atm, in a pressurized multi or one-person chamber </li></ul><ul><li>Complications of HBO therapy include barotrauma to ears, sinuses & lung, O 2 toxicity,grand mal fits & reversible visual changes. </li></ul>
  66. 66. PRECAUTIONS AND COMPLICATIONS <ul><li>PaO2 > 60mmHg in patients with chronic hypercapnia may cause depression of ventilation </li></ul><ul><li>FiO2 >0.5 may cause atelectasis, oxygen toxicity and ciliary depression </li></ul><ul><li>In premature infants PaO2 >80mmHg may cause Retinopathy of prematurity </li></ul><ul><li>Fire hazard is increased in presence of high FiO2 </li></ul>
  67. 67. <ul><li>5. During laser bronchoscopy, minimal FiO2 should be used to avoid intra tracheal ignition </li></ul><ul><li>6. Bacterial contamination can occur if nebulizers or humidifiers are used </li></ul>
  68. 68. MONITORING <ul><li>CLINICAL ASSESSMENT </li></ul><ul><li>PHYSIOLOGIC PARAMETERS – ABG PaO2, SaO2 AT :- </li></ul><ul><li>Initiation of therapy </li></ul><ul><li>Within 12 hours if initial FiO2 >0.6 </li></ul><ul><li>Within 72 hours in acute MI </li></ul><ul><li>Within 2 hours in COPD patients </li></ul><ul><li>Within 1 hour for neonates </li></ul>
  69. 69. EQUIPMENT MONITORING <ul><li>All oxygen delivery systems should be checked at least once a day </li></ul><ul><li>More frequent checks for systems which are : </li></ul><ul><li>Susceptible to variation in FiO2 e.g.hood, high flow blending systems </li></ul><ul><li>Applied to patients with artificial airways </li></ul><ul><li>Delivering a heated gas mixture </li></ul><ul><li>Applied to clinically unstable patients requiring FiO2 >0.5 </li></ul>
  70. 70. HAZARDS OF OXYGEN THERAPY <ul><li>OXYGEN TOXICITY </li></ul><ul><li>PRIMARILY AFFECTS LUNGS AND CNS </li></ul><ul><li>2 MAJOR DETRMINANTS : </li></ul><ul><li>PaO2 </li></ul><ul><li>Exposure time </li></ul><ul><li>CNS effects – tremors, twitching & convulsions occur with hyperbaric oxygen pressures </li></ul><ul><li>Pulmonary effects can occur at clinical PaO2 </li></ul>
  71. 71. PHYSIOLOGIC RESPONSE OF EXPOSURE TO 100 % O 2 <ul><li>EXPOSURE </li></ul><ul><li>0 - 12 hrs </li></ul><ul><li>12 - 14 hrs </li></ul><ul><li>24 - 30 hrs </li></ul><ul><li>30-72hrs </li></ul><ul><li>PHYSIOLOGIC RESPONSE </li></ul><ul><li>Normal pulmonary function </li></ul><ul><li>Substernal pain Tracheobronchitis </li></ul><ul><li>Decreasing vital capacity </li></ul><ul><li>Decreasing lung compliance </li></ul><ul><li>Increasing P(A-a)O2 gradient </li></ul><ul><li>Decreasing exercise PaO2 </li></ul><ul><li>Decreasing diffusing capacity </li></ul>
  72. 72. <ul><li>Patients exposed to high Po2 for prolonged period has signs similar to broncho-pneumonia </li></ul><ul><li>CXR- patchy infiltrates prominent in lower lung fields </li></ul><ul><li>Underlying the gross clinical signs is a major alveolar injury </li></ul>
  73. 73. PATHOGENESIS OF O 2 TOXICITY <ul><li>Exposure to ↑ Po2 damages capillary endothelium </li></ul><ul><li>Interstitial oedema & alveolar thickening follows </li></ul><ul><li>Type-1 alveolar cells are destroyed & Type-2 cells proliferate </li></ul>
  74. 74. <ul><li>Exudative phase follows </li></ul><ul><li>Low V/Q ratio,Physiologic shunting & hypoxemia </li></ul><ul><li>Hyaline membrane forms in alveolar regions </li></ul><ul><li>Pulmonary fibrosis & hypertension develops </li></ul>
  75. 75. <ul><li>AS LUNG INJURY WORSENS BLOOD OXYGENATION DETERIORATES </li></ul><ul><li>If this progressive hypoxemia is managed with additional oxygen, the toxic effect worsens </li></ul><ul><li>A vicious cycle sets in </li></ul>
  76. 76. <ul><li>OXYGEN TOXICITY </li></ul><ul><li>INCREASED </li></ul><ul><li>FiO 2 </li></ul><ul><li>LOW PaO 2 </li></ul>INCREASED SHUNTING
  77. 77. <ul><li>Toxicity is caused by overproduction of oxygen free radicals which damages cells </li></ul><ul><li>Normally superoxide dismutase enzyme and Anti-oxidants can defend against free radical damage </li></ul><ul><li>BUT in presence of high PaO2 ANTI OXIDANT SYSTEMS ARE INEFFECTIVE </li></ul><ul><li>Cell damage occurs and provoke immune response -> worsens injury </li></ul>
  78. 78. <ul><li>Exactly how much oxygen is safe is debatable </li></ul><ul><li>The GOAL should be to use lowest possible FiO 2 with adequate oxygenation </li></ul><ul><li>Limit patient exposure to 100% O 2 to less than 24 hours. </li></ul><ul><li>High FiO 2 is acceptable if concentration can be decreased to 70% within 2 days and 50% or less in 5 days </li></ul>
  79. 79. RETINOPATHY OF PREMATURITY <ul><li>RETROLENTAL FIBROPLASIA </li></ul><ul><li>Affects LBW &infants <1 month </li></ul><ul><li>High PaO2 causes retinal vasoconstriction which leads to necrosis of blood vessels </li></ul><ul><li>Keeping an infants arterial PaO2 <80mmHg is best way of prevention </li></ul>
  80. 80. ABSORPTION ATELECTASIS <ul><li>FiO2 >0.5 presents a significant risk. </li></ul><ul><li>High FiO2 rapidly depletes body nitrogen </li></ul><ul><li>Total pressure of venous gases decline </li></ul><ul><li>Gases that exists in body cavities rapidly diffuse in blood </li></ul>
  81. 81. <ul><li>Alveolar O2 rapidly diffuses in blood </li></ul><ul><li>If no source of gas repletion total gas pressure in alveolus rapidly declines until alveoli collapse e.g. obstruction </li></ul><ul><li>Because collapsed alveoli are perfused but not ventilated ->V/Q mismatch </li></ul>
  82. 82. <ul><li>The risk of absorption atelectasis is greatest in patients breathing at low tidal volumes e.g. sedation, surgical pain, CNS dysfunction. </li></ul><ul><li>In these cases poorly ventilated alveoli become unstable when they loose oxygen faster than it can be replaced. </li></ul><ul><li>Result is gradual shrinking of alveoli to complete collapse. </li></ul>
  83. 83. THANK YOU