Published on

Published in: Business
  • Be the first to comment

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Aluminum is the most abundant mineral in the earth's crust. In nature, however, it typically does not appear in its pure form. There is evidence of its use from as early as 300 B.C., but it was not until 1888 that an economically feasible process was developed for modern, commercial production of aluminum.
  • 8

    1. 1. Aluminum <ul><li>Mining & Processing </li></ul><ul><li>Extruding & Casting </li></ul><ul><li>Properties </li></ul>
    2. 2. Aluminum History <ul><li>Most Abundant Metal in Earth’s Crust </li></ul><ul><li>1825 discovered </li></ul><ul><li>1852 $545 per pound </li></ul><ul><li>1888 Economical Processing </li></ul>
    3. 3. Obtaining Alumina (Al 2 O 3 ) <ul><li>Mine Bauxite from Earth </li></ul><ul><li>Crush and spray with water. </li></ul><ul><li>Kiln-dry </li></ul><ul><li>Mix with soda ash and crushed lime. </li></ul><ul><li>Process in digester </li></ul><ul><li>Reduce under pressure </li></ul><ul><li>Settling tank where additional impurities are removed. </li></ul><ul><li>Precipitator </li></ul><ul><li>Thickener </li></ul><ul><li>heat in calcinating kiln to get alumina </li></ul>
    4. 4. http://www.rmc.com/gbu/bauxitealumina/
    5. 5. X
    6. 6. Smelting Aluminum <ul><li>the mineral cryolite is melted using electrical current </li></ul><ul><li>Alumina powder is placed into the cryolite bath, where it is melted and separated from its oxygen component, settling beneath the cryolite. The </li></ul><ul><li>molten aluminum is siphoned from the bottom of the smelter and placed in a crucible, then formed into ingot or transferred to an alloying furnace </li></ul>
    7. 7. Adding Alloys to Aluminum <ul><li>For production of primary aluminum alloys, the molten aluminum may be transferred from the smelter to the alloying furnace or previously produced aluminum ingot may be melted in the furnace. </li></ul>
    8. 8. Aluminum “Logs” <ul><li>The molten metal mixture is then cast--using the direct chill process--into a solid log. </li></ul>
    9. 9. Aluminum “Logs” <ul><li>Logs may be cut to obtain a more manageable billet. It is typically from billet that extruded aluminum shapes--commonly known in the industry as aluminum profiles --are made. </li></ul>
    10. 10. Aluminum Nomenclature First digit: Major Alloy: 1 None 2 Copper 3 Manganese 4 Silicon 5 Magnesium 6 Magnesium & Silicon 7 Zinc 8 Other
    11. 11. Aluminum Extrusion <ul><li>Ram </li></ul><ul><li>Billet </li></ul>
    12. 12. Aluminum Extrusions
    13. 13. Aluminum Extrusions
    14. 14. Aluminum Extrusions
    15. 15. Aluminum Casting
    16. 16. Aluminum Casting
    17. 17. Aluminum Castings
    18. 18. Aluminum Castings <ul><li>Petroleum </li></ul><ul><li>Piping </li></ul>
    19. 19. Aluminum Castings <ul><li>Valve </li></ul>
    20. 20. Aluminum Castings
    21. 21. Aluminum Castings
    22. 22. Aluminum Casting
    23. 23. CPAC Process <ul><li>1) Matrix </li></ul><ul><li>2A) Soft Tooling </li></ul><ul><li>3) Rubber Pattern </li></ul><ul><li>4) Plaster Mold </li></ul><ul><li>5) Casting </li></ul>
    24. 24. Aluminum Casting Case Study The Brake Pedal for the Chevrolet Corvette <ul><li>Study Outline: </li></ul><ul><li>Introduction </li></ul><ul><li>Choosing A Molding Method </li></ul><ul><li>Selecting an Aluminum Alloy </li></ul><ul><li>Developing Casting Soundness </li></ul><ul><li>Controlling the Metal Flow </li></ul><ul><li>Insuring Quality </li></ul><ul><li>Summary </li></ul><ul><li>http://www.sfsa.org/tutorials/brakepedal/default.htm </li></ul>
    25. 25. Aluminum Properties <ul><li>Aluminum in general (and extruded aluminum profiles in particular) offers a number of advantages over other materials (and other forming processes). Aluminum extrusion is a versatile metal-forming process that enables designers, engineers, and manufacturers to take full advantage of a wide array of physical characteristics: </li></ul>
    26. 26. Effect of Alloys <ul><li>copper as an alloying element tends to yield excellent machinability </li></ul><ul><li>manganese offers good corrosion resistance </li></ul><ul><li>magnesium is very good for welding applications </li></ul><ul><li>zinc can result in very high strength </li></ul><ul><li>magnesium and silicon together make for a very popular alloy class that is heat treatable and offers good overall characteristics. </li></ul>
    27. 27. Aluminum Weight <ul><li>Aluminum weighs less by volume than most other metals. In fact, it is about one-third the weight of iron, steel, copper, or brass. </li></ul>
    28. 28. Aluminum Weight
    29. 29. Aluminum Strength <ul><li>Aluminum is Strong. Profiles can be made as strong as needed for most applications. Cold-weather applications are particularly well-served by aluminum because, as temperatures fall, aluminum actually becomes stronger! </li></ul>
    30. 30. Aluminum Strength-to-Weight Ratio <ul><li>Aluminum Exhibits High Strength-to-Weight Ratio. Aluminum offers a unique combination of light weight and high strength. </li></ul><ul><li>Without aluminum, space travel might never have been realized. </li></ul><ul><li>Engineers are discovering that bridge decks constructed from extruded aluminum can bear heavier live loads, in part because the aluminum bridge deck itself weighs so much less than a conventional steel deck. </li></ul>
    31. 31. Aluminum Strength-to-Weight Ratio <ul><li>Ultimate Strength = 10 to 80 ksi = 3.7 to 29 </li></ul><ul><li> Specific Gravity 2.7 </li></ul><ul><li>Compared to Steel = 75 to 300 ksi = 9.5 to 38 </li></ul><ul><li> 7.86 </li></ul>
    32. 32. Aluminum Stiffness-to-Weight Ratio <ul><li>Modulus of Elasticity = 10,000 ksi = 3,700 </li></ul><ul><li> Specific Gravity 2.7 </li></ul><ul><li>Compared to Steel = 30,000ksi = 3,820 7.86 </li></ul>
    33. 33. Aluminum Corrosion <ul><li>Aluminum Resists Corrosion. Aluminum offers excellent corrosion resistance; it does not rust. Aluminum is protected by its own naturally occurring oxide film, a protection that can be further enhanced by anodizing or other finishing techniques. </li></ul>
    34. 34. Aluminum Heat Transfer <ul><li>Aluminum is an Excellent Thermal Conductor. Based on weight and overall cost, aluminum conducts heat (and cold) better than other common metals. </li></ul>
    35. 35. Aluminum Combustibility <ul><li>Aluminum Does Not Emit Sparks. </li></ul><ul><li>Aluminum is Not Combustible. </li></ul>
    36. 36. Aluminum Conductivity <ul><li>Aluminum Conducts Electricity. Bulk power transmissions generally take place via aluminum because, pound-for-pound, as copper. </li></ul>
    37. 37. Aluminum & Magnetic Fields <ul><li>Aluminum is Nonmagnetic. Because aluminum does not acquire a magnetic charge, it is useful for high-voltage applications,as well as for electronics, especially where magnetic fields come into play or where sensitive magnetic devices are employed. </li></ul>
    38. 38. Aluminum Joining <ul><li>Aluminum Profiles Can be Joined in Many Ways. </li></ul><ul><ul><li>welding, </li></ul></ul><ul><ul><li>soldering, or brazing </li></ul></ul><ul><ul><li>adhesives, </li></ul></ul><ul><ul><li>clips, bolts, rivets, or other fasteners. </li></ul></ul><ul><ul><li>Integral joining methods may be especially useful for certain designs. </li></ul></ul>
    39. 39. Aluminum Cost <ul><li>Aluminum Profiles are Economical. Extrusion tooling is relatively inexpensive and may not require long lead times. Even short-run prototypes often can be produced at moderate cost. </li></ul>
    40. 40. Aluminum Recycling <ul><li>Aluminum Can be Recycled. Aluminum retains a high scrap value. It can be recycled indefinitely without losing any of its superior characteristics, making it especially appealing according to both environmental and economic criteria. </li></ul>
    41. 41. Other Sources of Information <ul><li>Aluminum Extruders Council and The Aluminum Association, Inc., The Aluminum Extrusion Manual, Second Edition, 1995. </li></ul><ul><li>The Aluminum Association, Inc. (Secretariat), ANSI H35.1, American National Standard Alloy and Temper Designation Systems for Aluminum, 1997. </li></ul><ul><li>ASM International, ASM Handbook, Vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials,1991. </li></ul>
    42. 42. Other Sources of Information <ul><li>http://www.aec.org/cyberg/ </li></ul><ul><li>Hatch, John E. (Ed.), Aluminum: Properties and Physical Metallurgy, American Society for Metals, 1984. </li></ul><ul><li>Keeffe, Jeffrey (Ed.), Aluminum: Profile of the Industry, McGraw-Hill, Inc., 1982. </li></ul><ul><li>Serjeanston, Richard (Ed.), World Aluminum: A Metal Bulletin Databook, Metal Bulletin Books Ltd, Third Edition, 1996. </li></ul>
    43. 43. Aluminum
    44. 44. Copper Alloys (Bronze) <ul><li>Tin Bronze </li></ul><ul><ul><li>A Bronze 4.5 % Tin </li></ul></ul><ul><ul><li>C Bronze 8 % Tin </li></ul></ul><ul><ul><li>D Bronze 10 % Tin </li></ul></ul><ul><li>Naval Bronze </li></ul><ul><ul><li>13 % Tin,1.5 % Zinc </li></ul></ul><ul><ul><li>Phosphorous, Nickel </li></ul></ul><ul><li>Architectural Bronze </li></ul><ul><li> </li></ul>
    45. 45. Copper Alloys (Bronze) <ul><li>Aluminum Bronze </li></ul><ul><ul><li>4 to 11% Aluminum </li></ul></ul><ul><ul><li>Highest Strength for Cu alloys </li></ul></ul><ul><li>Silicon Bronze </li></ul><ul><ul><ul><li>5 % Silicon </li></ul></ul></ul><ul><ul><ul><li>1.5 % Zinc </li></ul></ul></ul><ul><li> </li></ul>
    46. 46. Brass = Copper + Zinc Percentage Cu:Zn:Alloy <ul><li>Red Brass 85:15 </li></ul><ul><li>Low Brass 80:20 </li></ul><ul><li>Admiralty Brass 70:29: 1% tin </li></ul><ul><li>Cartridge Brass 70:30 </li></ul><ul><li>Yellow Brass 65:35 </li></ul><ul><li>Lead Brass 65:32:3% lead </li></ul><ul><li>Naval Brass 60:39.25:0.75% tin </li></ul><ul><li>Muntz Metal 60:40 </li></ul><ul><li>Free Machining 60:39: .75% tin: 0.25% lead </li></ul><ul><li> </li></ul>