Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Propositional logic

7,357 views

Published on

Discrete Structures

Published in: Education, Technology, Spiritual

Propositional logic

  1. 1. PREPOSITIONal LOGIC
  2. 2. A statement is a declaratory sentence which is true orfalse but not both. In other words , a statement is adeclarative sentence which has a definate truth table.
  3. 3. Logical connectives or sentenceconnectives These are the words or symbols used to combine two sentence to form a compound statement. logic Name rank ~ Negation 1 ^ Conjunction 2 V Disjunction 3 => Conditional 4  Biconditional 5
  4. 4. A B ^ V ~A =>  NOR NAND XOR EX- NORT T T T F T T F F F TT F F T F F F F T T FF T F T T T F F T T FF F F F T T T T T F T
  5. 5. TAUTOLOGYi. A TAUTOLOGY IS A PREPOSITION WHICH IS TRUE FOR ALL TRUTH VALUES OF ITS SUB- PREPOSITIONS OR COMPONENTS.ii. A TAUTOLOGY IS ALSO CALLED LOGICALLY VALID OR LOGICALLY TRUE.iii. ALL ENTRIES IN THE COLUMN OF TAUTOLOGY ARE TRUE.
  6. 6. For example: p^q=>qP q p^q q p^q=> qT T T T TT F F F TF T F T TF F F F T
  7. 7. Contradiction CONTRADICTION IS A PREPOSITION WHICH IS ALWAYS FALSE FOR ALL TRUTH VALUES OF ITS SUB-PREPOSITIONS OR COMPONENTS. A CONTRADICTION IS ALSO CALLED LOGICALLY INVALID OR LOGICALLY FALSE ALL ENTRIES IN THE COLUMN OF CONTRADICTION ARE FALSE.
  8. 8. FOR EXAMPLE (P v Q)^(~P)^(~Q)P Q PVQ ~P ~Q (P v Q)^(~P)^(~Q)T T T F F FT F T F T FF T T T F FF F F T T F
  9. 9. Contingency It is a preposition which is either true orfalse depending on the truth value of its components or preposition..
  10. 10. FOR EXAMPLE ~p ^ ~qp q ~p ~q ~p ^ ~qT T F F FT F F T FF T T F FF F T T T
  11. 11. Logical equivalenceTwo statements are called logically equivalent if the truthvalues of both the statements are always identical.. For example: If we take two statements p=>q and ~q =>~p , then theretruth table values must be equal to satisfy the condition oflogical equivalence..
  12. 12. p q ~p ~q p=>q ~q=>~p T T F F T T T F F T F F F T T F T T F F T T T T SINCE,THE TRUTH TABLE VALUES OF BOTH STATEMENTS IS SAME. THUS, THE TWOSTATEMENTS ARE LOGICALLY EQUIVALENT..
  13. 13. LOGICAL IMPLICATIONS DIRECT IMPLICATION (p=>q) CONVERSE IMPLICATION (q=>p) INVERSE OR OPPOSITE IMPLICATION (~p=>~q) CONTRAPOSITIVE IMPLICATION (~q=>~p)
  14. 14. Algebra of preposition1) Commutative law2) Associative law3) Distributive law4) De Morgan’s law5) Idempotent law6) Identity law
  15. 15. Idempotent law 1. pVpp 2. p^ppp p pvp p v pp p^p p^ ppT T T T T TF F F F F F
  16. 16. Commutative law • pvq=qvp • p^q=q^pp q pvq qvp p^q q^pT T T T T TT F T T F FF T T T F FF F F F F F
  17. 17. Associative law• (p v q) v r  p v (q v r)• (p ^ q) ^ r  p ^ (q ^ r) p q r pvq ( p v q) v r qVr p v (q v r) T T T T T T T T T F T T T T T F T T T T T T F F T T F T F T T T T T T F T F T T T T F F T F T T T F F F F F F F
  18. 18. Distributive law• p ^ (q v r)  (p ^ q) v (p ^ r)• p ^ (q v r)  (p ^ q) v (p ^ r) p q r qvr p^(q v r) p^q p^r (p^q)v(p^r) T T T T T T T T T T F T T T F T T F T T T F T T T F F F F F F F F T T T F F F F F T F T F F F F F F T T F F F F F F F F F F F F
  19. 19. De Morgan’s law• ~(p v q)  ~p ^ ~q• ~(p ^ q)  ~p v ~q p q (p v q) ~(p v q) ~p ~q ~p ^ ~q T T T F F F F T F T F F T F F T T F T F F F F F T T T T
  20. 20. Identity law1) p ^ T  p 2) T ^ p  p3) p v F  p 4) F v p  pP T P^T P F P v FT T T T F TF T F F F F
  21. 21. TRANSITIVE RULE pq qr -------------- prRule of detachment P Pq ---------- q
  22. 22. EXAMPLE TEST THE VALIDITY OF THE FOLLOWING ARGUMENT…. IF A MAN IS A BACHELOR,HE IS WORRIED(A PREMISE) IF A MAN IS WORRIED,HE DIES YOUNG(A PREMISE)----------------------------------------------------------------------------------------------------- BACHELORS DIE YOUNG(CONCLUSION) P: A man is a bachelor Q:he is worried R: he dies young
  23. 23. The given argument in symbolic form can bewritten as: pq (a premise) qr (a premise) -------------------- pr (conclusion) The given argument is true by law ofsyllogism(law of transitive)…
  24. 24. p q r pq qr pr pq ^ qr (pq) ^ (qr) => prT T T T T T T TT T F T F F F TT F T F T T F TT F F F T F F TF T T T T T T TF T F T F T F TF F T T T T T TF F F T T T T T
  25. 25. PRESENTATION BY : ASHWINI VIPAT

×