
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
Internet of Things (IoT) is growing rapidly in decades, various applications came out from academia and industry. IoT is an amazing future to the Internet, but there remain some challenges to IoT for human have never dealt with so many devices and so much amount of data. Machine Learning (ML) is the technique that allows computers to learn from data without being explicitly programmed. Generally, the aim is to make predictions after learning and the process operates by building a model from the given (training) data and then makes predictions based on that model. Machine learning is closely related to artificial intelligence, pattern recognition and computational statistics and has strong relationship with mathematical optimization. In this talk, we focus on ML applications to IoT. Specially, we focus on the existing ML techniques that are suitable for IoT. We also consider the issues and challenges for solving the IoT problems using ML techniques.
Be the first to like this