Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Download to read offline
Sign up for a Scribd free trial to download now.
Download with free trialDownload to read offline
Sign up for a Scribd free trial to download now.
Download with free trialCovariance matrices are central to many adaptive filtering and optimisation problems. In practice, they have to be estimated from a finite number of samples; on this, I will review some known results from spectrum estimation and multiple-input multiple-output communications systems, and how properties that are assumed to be inherent in covariance and power spectral densities can easily be lost in the estimation process. I will discuss new results on space-time covariance estimation, and how the estimation from finite sample sets will impact on factorisations such as the eigenvalue decomposition, which is often key to solving the introductory optimisation problems. The purpose of the presentation is to give you some insight into estimating statistics as well as to provide a glimpse on classical signal processing challenges such as the separation of sources from a mixture of signals.
Be the first to like this
Covariance matrices are central to many adaptive filtering and optimisation problems. In practice, they have to be estimated from a finite number of samples; on this, I will review some known results from spectrum estimation and multiple-input multiple-output communications systems, and how properties that are assumed to be inherent in covariance and power spectral densities can easily be lost in the estimation process. I will discuss new results on space-time covariance estimation, and how the estimation from finite sample sets will impact on factorisations such as the eigenvalue decomposition, which is often key to solving the introductory optimisation problems. The purpose of the presentation is to give you some insight into estimating statistics as well as to provide a glimpse on classical signal processing challenges such as the separation of sources from a mixture of signals.
Total views
898
On Slideshare
0
From embeds
0
Number of embeds
696
Downloads
2
Shares
0
Comments
0
Likes
0
Join the community of over 1 million readers
Join the community of over 1 million readers
Sign up for a Scribd 30 day free trial to download this document plus get access to the world’s largest digital library.
Cancel anytime.The SlideShare family just got bigger. You now have unlimited* access to books, audiobooks, magazines, and more from Scribd.
Cancel anytime.