Einführung in Smart Grids

1,016 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,016
On SlideShare
0
From Embeds
0
Number of Embeds
184
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Einführung in Smart Grids

  1. 1. Technische Universität MünchenLehrprobe - Einführung in Smart Grids Dr. Martin Sachenbacher Technische Universität München Institut für Informatik http://www.in.tum.de/energieinformatik14. Mai 2012 M. Sachenbacher 1
  2. 2. Technische Universität MünchenElectricity Grid Basics Producers Consumers Conventional Industry Power Plants Households Pumped- Renewable storage Plants Energy Storage14. Mai 2012 M. Sachenbacher 2
  3. 3. Technische Universität MünchenElectricity Grid Assumptions   Guiding Principle: Production follows consumption   Basic Assumptions:   Production is deterministic and fully controllable   Consumption is well-understood stochastic process   Mass effects ensure smooth consumer behavior   Grid state is observable (frequency, voltage)   Thus, good prediction and a bit of fine-tuning do the job   Control energy that be subtracted or added to the grid; mostly, pump storage   This was the case for several decades, but now situation changes rapidly14. Mai 2012 M. Sachenbacher 3
  4. 4. Technische Universität MünchenUK Electricity Grid Frequency 14. Mai 2012 M. Sachenbacher 4
  5. 5. Technische Universität MünchenElectricity Grid in Germany: Fundamental Changes   Absolute priority given to (microgenerated) renewable power   Financial incentives for renewable power above market price   Decision to phase out nuclear power after Fukushima incident14. Mai 2012 M. Sachenbacher 5
  6. 6. Technische Universität MünchenChallenges from Integrating Renewable Power   Wind and solar power have much higher volatility, and this volatility is largely uncontrollable   Production is now turning into a stochastic process as well   Volatility may exceed the available control energy   Need mechanisms for grid stabilization14. Mai 2012 M. Sachenbacher 6
  7. 7. Technische Universität MünchenRenewable Power affects Grid Stability   Incident on September 6, 2010   Drastically more solar power in the grid than predicted before   Germany at 12 p.m.: Surplus of 7 GW   Entire negative control energy exhausted (- 4.3 GW)   Imported emergency reserve from neighboring countries (- 2.8 GW) to avoid black-out   Number of manual interventions   EWE in 2009: < 1 per week   EWE in 2011: > 1 per day   Bundesnetzagentur during winter 2010/11: 39   Bundesnetzagentur during winter 2011/12: 19714. Mai 2012 M. Sachenbacher 7
  8. 8. Technische Universität MünchenWhat can be done? Producers Consumers Conventional Industry Power Plants Households Pumped- Renewable storage Plants Energy Storage14. Mai 2012 M. Sachenbacher 8
  9. 9. Technische Universität MünchenWhat can be done? Storage Source: bmvbs.de14. Mai 2012 M. Sachenbacher 9
  10. 10. Technische Universität MünchenWhat can be done? Consumers Source: [Wiechmann, VDE Congress 2011]14. Mai 2012 M. Sachenbacher 10
  11. 11. Technische Universität MünchenBasic Elements of Demand-Response Systems   Short-range and medium-range prediction techniques for   Electric power demand   Solar and wind generated electric power   Grid capacity and potential grid bottlenecks   Voltage stability, especially for last mile   Measurement and logging infrastructure for state of grid components   Techniques to group elastic customers into clusters, and orchestrate their behavior   Decision support systems for effectuating demand-response mechansims14. Mai 2012 11 M. Sachenbacher
  12. 12. Technische Universität MünchenDecentralized Grid Management   Frequency-based distributed control strategy (EN 50438) enforced for microgenerators in Germany in 2007   Must shut off the output if observed frequency overshoots 50.2 Hz   However, observation delays can lead to critical oscillations Source: [Berrang et al. AVACS 2012] no delay 10s delay14. Mai 2012 M. Sachenbacher 12
  13. 13. Technische Universität MünchenDecentralized Grid Management   Improved control strategy proposed by VDE (VDE-AR-N 4105)   Linear increase/decrease of output per minute by 10%/40%, if frequency is observed below/above 50.2Hz   Avoids oscillations, but may overshoot target frequency Source: [Berrang et al. AVACS 2012] no delay 10s delay14. Mai 2012 M. Sachenbacher 13
  14. 14. Technische Universität MünchenDecentralized Grid Management   Control strategy analogous to internet transmission protocol (TCP) proposed by [Berrang et al. 2012]   Additive increase/multiplicative decrease of output per minute by 10%/0.67, if frequency is observed below/above 50.2Hz   Highly dampened version of on/off-controller behavior Source: [Berrang et al. AVACS 2012] no delay 10s delay14. Mai 2012 M. Sachenbacher 14

×