Dynamics of the WASP-3 system


Published on

A dynamical investigation of the extrasolar planetary system WASP-3 with special emphasis on transit time variations. Presented at the 8. Alexanxder von Humboldt Colloquium on Celestial Mechanics (March 2011)

Published in: Technology
  • Be the first to comment

  • Be the first to like this

Dynamics of the WASP-3 system

  1. 1. Dynamical Stability of the WASP-3 System Florian Freistetter Barbara Funk, Elke Pilat-Lohinger, Richard Schwarz HCM8, Bad Hofgastein 22. March 2011
  2. 2. YETI Young Exoplanet Transit Initative
  3. 3. YETI Gunma/Japan: Hidenori Takahashi Lulin/Taiwan: Wen-Ping Chen Seline Chia-Ling Hu Xinglong/China: Zhen-Yu Wu,Zhou Xu Byurakan/Armenia: Hayk Harutyunyan Tigran Movessian Rohzen/Bulgaria: Dinko Dimitrov Diana Kjurkchieva Stara Lesna/Slovak Rep.: Theo Pribulla Jano Budaj, Martin Vanko Torun/Poland: Gracjan Maciejewski Andrzej Niedzielski Rostock/Germany: Ronald Redmer Nadine Nettelmann Ulrike Kramm Jena/Germany: Ralph Neuhäuser, Ronny Errmann, Stefanie Rätz, Markus Mugrauer, Florian Freistetter Munich/Germany: Johannes Koppenhoefer Granada/Spain: Matilde Fernandez Armazones/Chile: Rolf Chini, Vera Hoffmeister CIDA/Venezuela: Cesar Briceno CfA Harvard/USA: Willie Torres Stony Brook/USA: Fred Walter Swathmore/USA: Erin Jensen, David Cohen Gettysburg/USA: Larry Marschall Big Bear Obs/USA: Aglae Kellerer
  4. 4. WASP-3 WASP-3: F7V star with 1.24 Msun Planet, found in 2007: <ul><li>M=2.06 Mjup
  5. 5. a=0.0317 AU
  6. 6. e=0 </li></ul>-> Variations in the Transit time?
  7. 7. WASP-3 MNRAS New observations of WASP-3b Transits
  8. 8. WASP-3 O-C Diagram litertature data new data
  9. 9. WASP-3 additional planet? 15M Earth at 0.0507 AU (close to 2:1 resonance) additional family of solutions close to 5:3 res
  10. 10. Observations vs. Simulations <ul><li>Observations can not give exact orbits
  11. 11. Additional source of information to constrain observations or the possibility of additional objects
  12. 12. -> Dynamics
  13. 13. Can numerical simulations help? </li></ul>47 Uma HD 4208
  14. 14. Stability Diagram
  15. 15. Stability Diagram:changing e_pl Eccentricity of Wasp-3b has to be small How eccentric can WASp-3b be? e_pl=0.05 e_pl=0.1
  16. 16. Stability Diagram:changing inclination No big difference... Region of instability dissolves i=10° i=20° i=30°
  17. 17. Stability Diagram:changing mass and eccentricity M=1.93 MJ M=2.19 MJ e=0.00 e=0.05 e=0.10
  18. 18. Stability Diagram:changing test particle mass no big difference between 1, 7 and 15 Earthmasses M=1 MEarth M=7 MEarth M=15 MEarth
  19. 19. Constraints? Dynamical constraints on the eccentricity and mass of WASP-3b better constraints on WASP-3c -> more observations -> analysis of resonances WASP-3c lies inside the stable region -> but very close to the chaotic region
  20. 20. Transit-Time Variations Resonances enhance TTVs 2:1 res (0.0503AU) 0.0507AU away from res 0.0507AU, e=0.1
  21. 21. Transit-Time Variations 2:1 res (0.0503AU) 3:2 res (0.0415AU) 2:1 has larger stable region for low e
  22. 22. Transit-Time Variations 5:2 res (0.0584AU) 5:3 res (0.0446AU) 5:2 stable for low e; 5:3 unstable
  23. 23. Conclusions <ul><li>published values of WASP3c can lead to stable orbits
  24. 24. WASP3c lies very close to chaotic region
  25. 25. 2:1 resonance is a better place for a planet than 5:3 or 3:2
  26. 26. new observational campaigns are currently ongoing
  27. 27. -> new data will lead to new parameters of WASP3c
  28. 28. -> new dynamical constraints </li></ul>
  29. 29. <ul>T H E E N D </ul>