Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Exercícios sobre angulos; rectas...

30,291 views

Published on

Published in: Technology, Sports
  • Be the first to comment

Exercícios sobre angulos; rectas...

  1. 1. Ângulos e triângulos | Unidade 6 APLICAR1. Observa a figura. Nos pontos A e B estão plantadas árvores. Pretende-se plantar uma árvore num ponto C de modo que os pontos A , B e C pertençam à mesma recta. Faz três desenhos indicando o ponto C ou à direita de B ou à esquerda de A ou entre A e B . B2. Marca no teu caderno os pontos A , B , C e D como se indica na figura. A A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio. D Por exemplo, E D 1 cm [ABCDE] é um C pentágono. A B 2.1 Traça o segmento de recta [CD] . 2.2 Traça a semi-recta DA . 2.3 Desenha a recta AB . 2.4 O ponto C pertence à recta AB ? 2.5 Copia e completa: AB = ; BC = ; AC = . 2.6 Porque é que não se fala em comprimento de uma semi- -recta ou de uma recta? F E3. Observa a figura ao lado. D G H Usa as letras da figura para indicar: C 3.1 três segmentos de recta; 3.2 duas rectas; 3.3 duas semi-rectas. A B Reflexão / Discussão 4. Observa a figura ao lado. 4.1 Coloca letras na figura. 4.2 Prolonga os segmentos de recta que entenderes de modo a obteres rec- tas e semi-rectas. 7
  2. 2. Ângulos e triângulos | Unidade 6 APLICAR1. A figura representa um campo de futebol. A J I H Indica, se existirem e usando notação conveniente: 1.1 duas rectas paralelas; 1.2 duas rectas concorrentes; 1.3 duas rectas perpendiculares; 1.4 duas rectas oblíquas; B G 1.5 um segmento de recta; 1.6 uma semi-recta; 1.7 dois segmentos de recta perpendiculares; 1.8 dois segmentos de recta paralelos; C D E F 1.9 dois segmentos de recta com o mesmo comprimento.2. Observa a figura e indica, usando notação conveniente: s c C 2.1 um segmento de recta paralelo à recta r ; D 2.2 uma recta perpendicular à recta s ; V E F 2.3 uma recta oblíqua em relação à b recta a ; 2.4 um segmento de recta perpen- A dicular à recta b ; 2.5 duas semi-rectas paralelas. B a r Reflexão / Discussão 3 Desenha no teu caderno um boneco idêntico ao da figura e, em seguida, usando notação conveniente, indica: 3.1 rectas paralelas; 3.2 rectas concorrentes; 3.3 rectas perpendiculares; 3.4 duas semi-rectas paralelas; 3.5 dois segmentos de recta paralelos. 9
  3. 3. Ângulos e triângulos | Unidade 6 APLICAR1. Assinala, no teu caderno, os pontos A , B , C , D e E como se indica na figura. A B C E D A F Desenha: 1.1 ” EAD ; D 1.2 ” BDC ; 1.3 ” ABD ; O vértice do ” CED é o ponto E . 1.4 ” EBC . . . E Os lados do ângulo CED são EC e ED .2. Observa a figura ao lado. B 2.1 Qual é o vértice do ângulo AEG? 2.2 Quais são os lados do ângulo ABE? G 2.3 Assinala, usando cores diferentes: C a) ” CDF ; b) ” ABG ; c) ” FEA . Reflexão / Discussão 3. Bissectriz de um ângulo A bissectriz de um ângulo é uma semi-recta que divide o ângulo em dois ângulos geometrica- mente iguais. Desenha a bissectriz de um ângulo repetindo a seguinte sequência: A A D B C C B Desenha-se um ângulo. Dobra-se a folha de papel A semi-recta definida pela fazendo a sobreposição dos dobra é a bissectriz do ângulo. . lados do ângulo. BD é a bissectriz do ” ABC . 11
  4. 4. Ângulos e triângulos | Unidade 6 APLICAR1. Observa as figuras. A B C D EConversa com os teus amigos sobre os ângulos que as figuras tesugerem.2. Usa um transferidor e mede cada um dos seguintes ângulos.2.1 2.2 B E O A D C2.3 2.4 B N E T A O2.5 H 2.6 2.7 R I T I R F M G3. Desenha um ângulo de: 50 13 60 0 12 0 70 110 80 90 100 100 80 110 70 12 60 0 50 13 0 14 40 0 0 40 14 15 30 0 0 30 153.1 50° ; 3.2 98° ; 3.3 180° ; 3.4 60° . 160 20 160 20 170 180 180 170 10 10 0 0 Lado do Lado do Vértice ângulo Vértice ângulo Reflexão / Discussão 4. Observa a figura e completa. E D W 4.1 DAE = C 15° W 4.2 FAG = ? 45° F ? 35° G A B 13
  5. 5. Questões de escolha múltipla • Para cada questão são indicadas quatro alternativas, das quais só uma está correcta. • Escreve na tua folha de resposta a letra correspondente à alternativa que seleccionaste para responder à questão. • Confronta a tua resposta com a de outros colegas. • Confirma as respostas com o(a) teu(tua) professor(a). 1 Observa a figura. Qual das seguintes afirmações é verdadeira? G (A) As rectas a e c são perpendiculares. (B) As rectas EB e BC não se intersectam. D E F e (C) As rectas e e d são paralelas. A B C d (D) As rectas DF e AC são concorrentes. a c b 2 Na figura estão representados dois triângulos. C b 93° 50° a 30° A B Qual das seguintes afirmações é verdadeira? (A) b = 90° . (B) a = 40° . (C) a = 47° e b = 60° . (D) a = 37° e b = 60° . 3 Observa a figura. D C 35° 135° 30° A B Qual das seguintes afirmações é verdadeira? (A) O triângulo [ABC] é acutângulo. (B) O triângulo [ACD] é obtusângulo. W (C) ABC = 50° . W (D) ADC = 45° .18
  6. 6. Ângulos e triângulos | Unidade 6 4 O perímetro de um triângulo equilátero é 180 cm . Qual das seguintes afirmações é verdadeira? (A) A área do triângulo é 180 m2 . (B) O lado do triângulo tem 6 dm de comprimento. (C) O triângulo é rectângulo. (D) O triângulo é obtusângulo. 5 Observa a figura ao lado. 40 cm O perímetro da figura é 180 cm e os triângulos [ABC] e [CDE] sãoD E equiláteros. Qual das seguintes afirmações é verdadeira? (A) DC = 50 cm . C (B) AB = 20 cm . (C) AC = 30 cm . A B (D) BC = 15 cm . 6 O perímetro de um triângulo isósceles é 60 cm e o lado diferente tem 10 cm de comprimento. O comprimento de cada um dos lados iguais é: (A) 25 cm . (B) 10 cm . (C) 15 cm . (D) 5 cm . 7 Observa a figura ao lado. Qual das seguintes afirmações pode ser verdadeira? c (A) a = 65° . (B) b = 45° . a (C) c = 60° . e (D) e = 85° . d b 19
  7. 7. Questões de desenvolvimento • Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efectuar e todas as justificações necessárias. 1 Usar o transferidor. Usa um transferidor para medir os ângulos dos triângulos e completa a tabela. a b c b 1 c 2 3 a a b c Triângulos 1 2 3 Ângulos a b c a+b+c 2 Usar as notações. G a Observa a figura e indica, usando a notação conve- F niente: E e 2.1 um segmento de recta paralelo à recta c ; 2.2 um segmento de recta perpendicular à recta d ; D 2.3 uma recta perpendicular à recta e ; I A 2.4 uma recta oblíqua em relação à recta b ; C H 2.5 um ângulo agudo; c 2.6 um ângulo recto; 2.7 um ângulo obtuso; B 2.8 um triângulo rectângulo; b d 2.9 um triângulo acutângulo. 3 Classificar um triângulo. Acerca do triângulo [MAR] sabe-se que: MA = 80 cm , AR = 60 cm e RM = 60 cm . Como se classifica o triângulo quanto ao comprimento dos lados?20
  8. 8. Ângulos e triângulos | Unidade 6 4 Para pensar e resolver…E D C A figura ao lado é formada por três triângulos equiláteros. O perímetro da figura é 25 cm . Qual é o perímetro do triângulo [ABD] ? A B 5 Os triângulos e os perímetros. Na figura seguinte os triângulos [ABE] e [BCD] são equiláteros. A E B C D 5.1 Como se classificam os triângulos quanto aos ângulos? 5.2 Qual é a amplitude do ângulo ABE ? 5.3 Se o perímetro da figura é 36 cm e o lado do triângulo maior é 10 cm , qual é o comprimento do lado do triângulo menor? 6 Triângulo rectângulo. Num triângulo rectângulo um dos ângulos agudos tem de amplitude 25° . Qual é a amplitude do outro ângulo agudo? 7 Ângulos de um triângulo. Um triângulo tem dois ângulos geometricamente iguais cuja soma das amplitudes é 60° . 7.1 Qual é a amplitude do outro ângulo? 7.2 Como se classifica o triângulo quanto à amplitude dos ângulos? 8 Determinar amplitudes de ângulos. D C Completa. W 8.1 ABD = ; W 8.2 DBC = ; W 8.3 ADC = . 58° A B 21
  9. 9. Problemas e desafios complementares1. Na figura está representado um triângulo [MAR] . Coloca as letras na figura, sabendo que: W • MAR = 120° ; • MA < AR .2. Na figura [ACDF] é um rectângulo. F E D Indica, usando as letras da figura: 2.1 um triângulo rectângulo; G 2.2 um triângulo acutângulo; H 2.3 um triângulo obtusângulo; 2.4 duas rectas paralelas; A B C 2.5 dois segmentos de recta com o mesmo comprimento; 2.6 duas semi-rectas com a mesma origem.3. Indica um valor aproximado para a amplitude de cada um dos ângulos. Usa um transferidor para verificares a tua estimativa. a) b) c)4. Dos seguintes ângulos indica aquele que te parece ter maior amplitude. a) b) c) d) e) Verifica com um transferidor a tua resposta.22
  10. 10. Ângulos e triângulos | Unidade 65. Verifica, usando um transferidor, que os seguintes ângulos têm a mesma amplitude. Só para divertir 1. Quantos triângulos podes observar nesta figura? D C G E F A B 2. Esta figura representa uma caixa aberta. Quais das seguintes planificações podem ser de uma caixa aberta? 23
  11. 11. Volumes | Unidade 7 APLICAR1. Explica a razão da maior parte dos países utilizarem o Sistema Métrico Decimal (SMD).2. Qual é a unidade fundamental de volume?3. O que é 1 metro cúbico? Meia canada, medida-padrão para volume de líquidos (época de D. Sebastião – 1575).4. Expressa em decímetros cúbicos: Meio alqueire, medida-padrão 3 de líquidos e secos (época de 4.1 70 m ; D. João VI – 1819). 4.2 10,3 cm3 ; 4.3 30 000 mm3 ; 4.4 0,32 dam3 .5. Copia e completa. 5.1 3200 m3 = dam3 ; 5.2 0,026 hm3 = dam3 ; 5.3 42,72 hm3 = m3 ; 5.4 33 dm3 = m3 ; 5.5 32 cm3 = m3 ; 5.6 37 m3 = dm3 . Reflexão / Discussão 6. Escreve, em decímetros cúbicos, o volume de cada um dos sólidos representados na figura. Volume = 130 cm3 Volume = 52,3 cm3 29
  12. 12. Volumes | Unidade 7 APLICAR1. Copia e completa. 1.1 3 dl = cl ; 1.2 25 kl = dl ; 1.3 0,03 dal = dl ; 1.4 0,003 hl = L.2. Expressa em centímetros cúbicos. 2.1 10 L ; 2.2 0,03 L ; Volume Capacidade 2.3 80 cl ; m3 kl 2.4 0,0065 kl ; hl 2.5 16 hl ; dal 2.6 0,03 dal . dm3 L dl3. Expressa em litros. cl 3.1 3000 cm3 ; 3.2 3,6 dm3 ; cm3 ml 3.3 6 dam3 ; 3.4 0,003 m3 .4. Une com uma seta os elementos da primeira coluna com os correspondentes da segunda coluna. 350 L • • 1200 mm3 1000 L • • 2500 dl 250 dm • 3 • 1L 1,2 cm3 • • 350 dm3 1 dm3 • • 1 m3 Reflexão / Discussão 5. Diz qual a unidade de medida adequada para indicar: 5.1 a quantidade de areia que transporta um camião; 5.2 a capacidade de um balde de limpeza; 5.3 a capacidade de um frasco de perfume. 31

×