Neurones & the Action      PotentialNeurones conduct impulses fromone part of the body to another.                    www....
STRUCTURE            They have three distinct              parts:              (1) Cell body,              (2) Dendrites, ...
Myelinated AxonsThe axon is a single long,  thin extension that  sends impulses to  another neuron.They vary in length and...
Resting Potential                          In a resting neuron                            (one that is not                ...
Contribution of Active  Transport – Factor 1There are different numbers of potassium ions (K+)  and sodium ions (Na+) on e...
Contribution of facilitated diffusion                                The sodium-potassium                                 ...
RESULTS IN:          a net positive chargeoutside & a net negative chargeinside. Such a membrane isPOLARISED
Action PotentialWhen the cell membranes  are stimulated, there is  a change in the  permeability of the  membrane to sodiu...
DEPOLARISATION                              As the outside of the cell In order for the neuron to     has become more gene...
All-or-None PrincipleThroughout depolarisation, the Na+ continues   to rush inside until the action potential   reaches it...
Refractory PeriodThere are two types of   refractory period:Absolute Refractory   Period – Na+ channels   are inactivated ...
Speed of Nerve ImpulsesImpulses travel very rapidly along  neurones. The presence of a myelin  sheath greatly increases th...
Speed of Nerve ImpulsesImpulses travel very  rapidly along neurons.  The presence of a  myelin sheath greatly  increases t...
Upcoming SlideShare
Loading in …5
×

05d neurones & the action potential

656 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
656
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
18
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

05d neurones & the action potential

  1. 1. Neurones & the Action PotentialNeurones conduct impulses fromone part of the body to another. www.mrothery.co.uk
  2. 2. STRUCTURE They have three distinct parts: (1) Cell body, (2) Dendrites, and (3) the Axon The particular type of neuron that stimulates muscle tissue is called a motor neuron. Dendrites receive impulses and conduct them toward the cell body.
  3. 3. Myelinated AxonsThe axon is a single long, thin extension that sends impulses to another neuron.They vary in length and are surrounded by a many-layered lipid and protein covering called the myelin sheath, produced by the schwann cells.
  4. 4. Resting Potential In a resting neuron (one that is not conducting an impulse), there is a difference inelectrical charges on the outside and inside ofthe plasma membrane. The outside has apositive charge and the inside has a negativecharge.
  5. 5. Contribution of Active Transport – Factor 1There are different numbers of potassium ions (K+) and sodium ions (Na+) on either side of the membrane. Even when a nerve cell is not conducting an impulse, for each ATP molecule that’s hydrolysed, it is actively transporting 3 molecules Na+ out of the cell and 2 molecules of K+ into the cell, at the same time by means of the sodium-potassium pump.
  6. 6. Contribution of facilitated diffusion The sodium-potassium pump creates a concentration and electrical gradient for Na+ and K+, which means that K+ tends to diffuse (‘leak’) out of the cell and Na+ tends to diffuse in. BUT, the membrane is much more permeable to K+, so K+ diffuses out along its concentration gradient much more slowly.
  7. 7. RESULTS IN: a net positive chargeoutside & a net negative chargeinside. Such a membrane isPOLARISED
  8. 8. Action PotentialWhen the cell membranes are stimulated, there is a change in the permeability of the membrane to sodium ions (Na+).The membrane becomes more permeable to Na+ and K+, therefore sodium ions diffuse into the cell down a concentration gradient. The entry of Na+ disturbs the resting potential and causes the inside of the cell to become more positive relative to the outside.
  9. 9. DEPOLARISATION As the outside of the cell In order for the neuron to has become more generate an action positive than the inside potential the membrane of the cell, the potential must reach the membrane is now threshold of excitation. DEPOLARISED. When enough sodium ions enter the cell to depolarise the membrane to a critical level (threshold level) an action potential arises which generates an impulse.
  10. 10. All-or-None PrincipleThroughout depolarisation, the Na+ continues to rush inside until the action potential reaches its peak and the sodium gates close.If the depolarisation is not great enough to reach threshold, then an action potential and hence an impulse are not produced.This is called the All-or-None Principle.
  11. 11. Refractory PeriodThere are two types of refractory period:Absolute Refractory Period – Na+ channels are inactivated and no matter what stimulus is applied they will not re- open to allow Na+ in & depolarise the membrane to the threshold of an action potential.Relative Refractory Period - Some of the Na+ channels havere-opened but the threshold is higher than normal making itmore difficult for the activated Na+ channels to raise themembrane potential to the threshold of excitation.
  12. 12. Speed of Nerve ImpulsesImpulses travel very rapidly along neurones. The presence of a myelin sheath greatly increases the velocity at which impulses are conducted along the axon of a neuron. In unmyelinated fibres, the entire axon membrane is exposed and impulse conduction is slower.
  13. 13. Speed of Nerve ImpulsesImpulses travel very rapidly along neurons. The presence of a myelin sheath greatly increases the velocity at which impulses are conducted along the axon of a neuron. In unmyelinated fibres, the entire axon membrane is exposed and impulse conduction is slower.

×