Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

semantics in social networks


Published on

An example of academic interest in using semantic web frameworks in the social web. Slides for the W3C Technical Plenary Day, Santa Clara, 2009.

Published in: Technology, Education

semantics in social networks

  1. semantics insocial networks<br />an example of academic interest <br />
  2. =<br />+<br />+<br />two biases.<br />
  3. sends poker invitation<br />says hello<br />changed status<br />added a connection<br />likes your slides<br />hubbub 2.0<br />published a picture<br />commented<br />LOL<br />
  4. beetweenness centrality reveals brokers<br />« A place for good ideas » [Burt 1992] [Burt 2004]<br />sociograms andanalysis<br />
  5. multiple roles,<br />profiles, contexts, etc.<br />one graph structure doesn’t fit all.<br />
  6. Fabien<br />Michel<br />social network analysis<br />Guillaume<br />Rémi<br />Marco<br />Nicolas<br />Man<br />creator<br />type<br />creator<br />Person<br />author<br />Fabien<br />doc.html<br />type<br />sub property<br />sub class<br />title<br />Person<br />author<br />Man<br />Semantic web is not antisocial<br />semantic web<br />graphs, graphs, graphs, …<br />
  7. SW&SN some contributions…<br />propagating trust [Goldbeck et al. 2003]<br />structural characteristics [Fininet al. 2005]<br />applying classic SNA [Paolillo et al. 2006]<br />merging profiles [Goldbeck &Rothstein 2008]<br />extending SPARQL [Corby et al 2004] [Anyanwuet al. 2007] [Kochut et al 2007] [Baget et al, 2007] [Corby 2008]<br />
  8. describe persons<br />[Brickley & Miller 2004]<br />
  9. relations<br />[Davis & Vitiello, 2004]<br />
  10. Fabien<br />Mylène<br />Gérard<br />knows<br />colleague<br />father<br />sister<br />(guillaume)=5<br />(guillaume)=3<br />guillaume<br />d<br />&lt;family&gt;<br />colleague<br />colleague<br />mother<br />Michel<br />parent<br />sibling<br />Yvonne<br />mother<br />father<br />brother<br />sister<br />c.f. [Erétéo et al.]<br />
  11. typed path extraction<br />colleague of, colleague of, (...) the manager of someone<br />select ?from ?to<br />{<br /> ?from (rel:worksWith*/rel:manages)::$path ?to<br /> filter(pathLength($path) &lt;= 6)<br />} group by ?from<br /><br />c.f. [Corby et al.]<br />
  12. dataset in RDF<br />61 937 actors & 494 510 relationships<br /><ul><li>18 771 family links between 8 047 actors
  13. 136 311 friend links implicating 17 441 actors
  14. 339 428 favorite links for 61 425 actors</li></ul>etc.<br /> e.g. different strategic actors depending on the link types<br />c.f. [Erétéo et al.]<br />
  15. high centrality<br />SemSNA Schema<br />annotating the networks with their characteristics<br />c.f. [Erétéo et al.]<br />
  16. flat folksonomies<br />
  17. SW&Tags some contributions…<br />manual structuring[Tanasescu et al., 2007] [Huynh-Kim Bang et al. , 2008]<br />(semi-) automaticstructuring[Mika, 2005][Heymann et al., 2006] [Schmitz, 2006][Halpin et al., 2007-2009] [Cattuto et al., 2008] [Markines et al., 2009][Specia et al., 2007] [Begelman et al., 2006]<br />usingexternalresources[Good et al., 2007] [Passant et al., 2007] [Specia et al., 2007][Cattuto et al., 2008][Giannakidou et al., 2008][Ronzano et al., 2008] [Tesconi et al., 2008]<br />schemas for interoperability[Gruber, 2005] [Newman et al., 2005] [Breslin et al., 2005][Kim et al., 2007][Passant et al., 2008]<br />
  18. semantically-interlinked online communities<br />[Breslin et al., 2005]<br />
  19. Tag Ontology& SCOT<br />[Newman et al., 2005][Kim et al., 2007]<br />
  20. SKOS & tags<br />
  21. MOAT<br />[Passant, 2009]<br />
  22.<br />e.g. tag as named graphs<br />c.f. [Limpens et al.]<br />Nice, France<br />Washington, DC<br />Oxford, UK<br />
  23. c.f. [Limpens et al.]<br />
  24. c.f. [Limpens et al.]<br />
  25. c.f. [Limpens et al.]<br />
  26. c.f. [Limpens et al.]<br />
  27. c.f. [Limpens et al.]<br />
  28. c.f. [Limpens et al.]<br />
  29. c.f. [Limpens et al.]<br />
  30. c.f. [Limpens et al.]<br />
  31. social webs & intranets<br />
  32. enterprise social networking<br /> business intelligence, watching, monitoring<br /> communities of interest, of practice, of experts<br /><br />
  33. integrating with internal IT landscape<br />c.f. [Delaforge et al.]<br />
  34. application contributions…<br />security and access controlFOAF+SSL [Story, 2008]<br />trust based service composition[Kuter& Golbeck, 2009] <br />policy aware content reuse[Seneviratne et al., 2009]<br />social enrichment and ranking[Choudhury et al., 2009]<br />context & augmented interactions Live Social Semantics [Alani et al. 2008]<br />identity management[Matthew Rowe, 2009]<br />interlinked social sitesDrupal [Corlosquet et al., 2009]<br />…<br />
  35. many other topics…<br />social journalism, social enterprise, social data governance, social healthcare, open social, security and privacy, provenance & trust, etc.<br />
  36. take home<br />messages<br />
  37. semantic social network analysis stack<br />exploit the semantic of typed social graphs<br />
  38. linked open data<br />as the underlying infrastructure<br />[Berners-Lee, 2009] <br />
  39. accuracy<br />typed networks<br />+ parameterized operators<br />= more precise analysis<br />
  40. Aaron Nace ©<br />pros and cons of<br />fragmented identities<br />
  41. owl:sameAs<br />=<br />Fabien Bafien<br />owl:differentFrom<br />≠<br />MagicSemanticHagridHagrid<br />
  42. evolution<br />extensible open models<br />+ declarative query language<br />= more flexible framework<br />
  43. time<br />in the models and in the analysis<br />
  44. security<br />semiotics<br />scale<br />hypermnesia<br />...<br />mobile<br />
  45.<br />see also slideshare<br /><br />