Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
ONE WEB OF PAGES, ONE WEB OF PEOPLES,
ONE WEB OF SERVICES, ONE WEB OF DATA,
ONE WEB OF THINGS…
AND WITH THE SEMANTIC WEB B...
WIMMICS TEAM
 Inria
 CNRS
 University of Nice
Inria Lille - Nord Europe (2008)
Inria Saclay – Ile-de-France
(2008)
Inri...
CHALLENGE
to bridge social semantics and
formal semantics on the Web
MULTI-DISCIPLINARY TEAM
 50 members (2015)
 14 nationalities
 1 DR, 3 Professors
 3CR, 4 Assistant professors
 1 SRP
...
Previously on… the Web
6
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
URL
7
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communicatio...
8
three components of the Web architecture
1. identification (URI) & address (URL)
ex. http://www.inria.fr
2. communicatio...
9
multiplying references to the Web
HTTP
URL
HTML
reference address
communication
WEB
identify what
exists on the
web
http://my-site.fr
identify,
on the web, what
exists
http://animals.org/this-zebra
linking open data
12
W3C standards
13
W3C standards
14
a Web approach to data publication
URI ???...
« http://fr.dbpedia.org/resource/Paris »
15
a Web approach to data publication
HTTP URI
16
a Web approach to data publication
HTTP URI
GET
17
a Web approach to data publication
HTTP URI
GET
HTML, …
18
a Web approach to data publication
HTTP URI
GET
HTML,XML,…
19
linked data
20
ratatouille.fr
or the recipe for linked data
21
ratatouille.fr
or the recipe for linked data
22
ratatouille.fr
or the recipe for linked data
23
ratatouille.fr
or the recipe for linked data
24
datatouille.fr
or the recipe for linked data
25
W3C standards
26
W3C standards
HTTP
URI
RDF
reference address
communication
Web of
data
27
"Music"
RDFworld-wide graphs
http://inria.fr/rr/doc.html
http://ns.inria.fr/fabien.gandon#me
http://inria.fr/schema#aut...
28
linked open data explosion on the Web
0
50
100
150
200
250
300
350
01/05/2007 01/05/2008 01/05/2009 01/05/2010 01/05/20...
29
W3C standards
30
W3C standards
HTTP
URI
RDF
reference address
communication
Web of
data
31
W3C standards
32
W3C standards
HTTP
URI
RDFS
OWL
reference address
communication
web of
data
33
RDFS to declare classes of
resources, properties, and
organize their hierarchy
Document
Report
creator
author
Document ...
34
OWL in one…
algebraic properties
disjoint properties
qualified cardinality
1..1
!
individual prop. neg
chained prop.

...
35
W3C standards
36
PROV-O: vocabulary for provenance and traceability
describe entities and activities involved in providing a resource
37
W3C standards
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoni...
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoni...
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoni...
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoni...
RESEARCH CHALLENGES
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoni...
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning...
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning...
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning...
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning...
METHODS AND TOOLS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning...
cultural data is a weapon of mass construction
PUBLISHING
 extract data (content, activity…)
 provide them as linked data
DBPEDIA.FR (extraction, end-point)
180 000 00...
PUBLISHING
e.g. DBpedia.fr
185 377 686 RDF triples extracted and mapped
PUBLISHING
e.g. DBpedia.fr
number of queries per day
70 000 on average
2.5 millions max
185 377 686 RDF triples extracted ...
PUBLISHING
e.g. DBpedia.fr
2.5 billion RDF triples of versioning activities
<http://fr.dbpedia.org/Réaux>
a prov:Revision ...
DBPEDIA & STTL
declarative transformation
language from RDF to text
formats (XML, JSON, HTML,
Latex, natural language, GML...
“searching” comes in many flavors
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
[Cojan, Boyer e...
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO...
SEARCHING
 exploratory search
 question-answering
DBPEDIA.FR (extraction, end-point)
180 000 000 triples
DISCOVERYHUB.CO...
SEARCHING
e.g. DiscoveryHub
semantic spreading activation
SIMILARITY
FILTERING
discoveryhub.co
SEARCHING
e.g. QAKIS
ALOOF: robots learning by reading on the Web
Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location d...
ALOOF: robots learning by reading on the Web
 First Object Relation Knowledge Base:
46.212 co-mentions, 49 tools, 14 room...
BROWSING
e.g. SMILK plugin
[Lopez, Cabrio, et al.]
BROWSING
e.g. SMILK plugin
[Nooralahzadeh, Cabrio, et al.]
MODELING USERS
 individual context
 social structures
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
p...
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
p...
MODELING USERS
 individual context
 social structures
PRISSMA
prissma:Context
0 48.86034
-2.337599
200
geo:lat
geo:lon
p...
DEBATES & EMOTIONS
#IRC
DEBATES & EMOTIONS
#IRC argument rejection
attacks-disgust
MODELING USERS
e.g. e-learning & serious games
[Rodriguez-Rocha, Faron-Zucker et al.]
LUDO: ontological modeling of serious games
Learning
Game KB
Player’s profile &
context
Game design
[Rodriguez-Rocha, Faro...
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
abstract graph ...
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO4TA
predic...
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn Hn
RATIO...
QUERY & INFER
 graph rules and queries
 deontic reasoning
 induction
CORESE
LICENTIA INDUCTION
 &
G2 H2
 &
G1 H1
<
Gn...
QUERY & INFER
e.g. CORESE/KGRAM
[Corby et al.]
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
RIF-BLD SPARQL RIFSPARQL
?x...
FO  R  GF  GR
mapping modulo an ontology
car
vehicle
car(x)vehicle(x)
GF
GR
vehicle
car
O
truck
car
   


...
QUERY & INFER
e.g. Gephi+CORESE/KGRAM
QUERY & INFER
e.g. Licencia
[Villata et al.]
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
EXPLAIN
 justify results
 predict performances
[Hasan et al.]
88
Web 1.0, 2.0, 3.0 …
89
price
convert?
person
other sellers?
Web 1.0, 2.0, 3.0 …
WIMMICS
1. user & interaction design
2. communities & social networks
3. linked data & semantic Web
4. reasoning & analyzi...
91
Toward a Web of Programs
“We have the potential for every HTML document to be a
computer — and for it to be programmabl...
92
one Web … a unique space in every meanings:
data
persons documents
programs
metadata
93
Toward a Web of Things
WIMMICSWeb-instrumented man-machine interactions, communities and semantics
   
Fabien Gandon - @fabien_gandon - http:...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bi...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bi...
One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bi...
Upcoming SlideShare
Loading in …5
×

One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bind them.

629 views

Published on

Keynote Fabien GANDON, at WIM2016: One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bind them.

Published in: Science
  • Be the first to comment

One Web of pages, One Web of peoples, One Web of Services, One Web of Data, One Web of Things…and with the Semantic Web bind them.

  1. 1. ONE WEB OF PAGES, ONE WEB OF PEOPLES, ONE WEB OF SERVICES, ONE WEB OF DATA, ONE WEB OF THINGS… AND WITH THE SEMANTIC WEB BIND THEM. Fabien GANDON, WIMS2016, @fabien_gandon http://fabien.info    
  2. 2. WIMMICS TEAM  Inria  CNRS  University of Nice Inria Lille - Nord Europe (2008) Inria Saclay – Ile-de-France (2008) Inria Nancy – Grand Est (1986) Inria Grenoble – Rhône- Alpes (1992) Inria Sophia Antipolis Méditerranée (1983) Inria Bordeaux Sud-Ouest (2008) Inria Rennes Bretagne Atlantique (1980) Inria Paris-Rocquencourt (1967) Montpellier Lyon Nantes Strasbourg Center Branch Pau I3S Web-Instrumented Man-Machine Interactions, Communities and Semantics
  3. 3. CHALLENGE to bridge social semantics and formal semantics on the Web
  4. 4. MULTI-DISCIPLINARY TEAM  50 members (2015)  14 nationalities  1 DR, 3 Professors  3CR, 4 Assistant professors  1 SRP DR/Professors:  Fabien GANDON, Inria, AI, KR, Semantic Web, Social Web  Nhan LE THANH, UNS, Logics, KR, Emotions  Peter SANDER, UNS, Web, Emotions  Andrea TETTAMANZI, UNS, AI, Logics, Agents, CR/Assistant Professors:  Michel BUFFA, UNS, Web, Social Media  Elena CABRIO, UNS, NLP, KR, Linguistics  Olivier CORBY, Inria, KR, AI, Sem. Web, Programming, Graphs  Catherine FARON-ZUCKER, UNS, KR, AI, Semantic Web, Graphs  Alain GIBOIN, Inria, Interaction Design, KE, User & Task models  Isabelle MIRBEL, UNS, Requirements, Communities  Serena VILLATA, CNRS, AI, Argumentation, Licenses, Rights Inria Starting Position: Alexandre MONNIN, Philosophy, Web
  5. 5. Previously on… the Web
  6. 6. 6 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr URL
  7. 7. 7 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr HTTP URL address
  8. 8. 8 three components of the Web architecture 1. identification (URI) & address (URL) ex. http://www.inria.fr 2. communication / protocol (HTTP) GET /centre/sophia HTTP/1.1 Host: www.inria.fr 3. representation language (HTML) Fabien works at <a href="http://inria.fr">Inria</a> HTTP URL HTML reference address communication WEB
  9. 9. 9 multiplying references to the Web HTTP URL HTML reference address communication WEB
  10. 10. identify what exists on the web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  11. 11. linking open data
  12. 12. 12 W3C standards
  13. 13. 13 W3C standards
  14. 14. 14 a Web approach to data publication URI ???... « http://fr.dbpedia.org/resource/Paris »
  15. 15. 15 a Web approach to data publication HTTP URI
  16. 16. 16 a Web approach to data publication HTTP URI GET
  17. 17. 17 a Web approach to data publication HTTP URI GET HTML, …
  18. 18. 18 a Web approach to data publication HTTP URI GET HTML,XML,…
  19. 19. 19 linked data
  20. 20. 20 ratatouille.fr or the recipe for linked data
  21. 21. 21 ratatouille.fr or the recipe for linked data
  22. 22. 22 ratatouille.fr or the recipe for linked data
  23. 23. 23 ratatouille.fr or the recipe for linked data
  24. 24. 24 datatouille.fr or the recipe for linked data
  25. 25. 25 W3C standards
  26. 26. 26 W3C standards HTTP URI RDF reference address communication Web of data
  27. 27. 27 "Music" RDFworld-wide graphs http://inria.fr/rr/doc.html http://ns.inria.fr/fabien.gandon#me http://inria.fr/schema#author http://inria.fr/schema#theme http://inria.fr/rr/doc.html
  28. 28. 28 linked open data explosion on the Web 0 50 100 150 200 250 300 350 01/05/2007 01/05/2008 01/05/2009 01/05/2010 01/05/2011 number of open, published and linked datasets in the LOD cloud
  29. 29. 29 W3C standards
  30. 30. 30 W3C standards HTTP URI RDF reference address communication Web of data
  31. 31. 31 W3C standards
  32. 32. 32 W3C standards HTTP URI RDFS OWL reference address communication web of data
  33. 33. 33 RDFS to declare classes of resources, properties, and organize their hierarchy Document Report creator author Document Person
  34. 34. 34 OWL in one… algebraic properties disjoint properties qualified cardinality 1..1 ! individual prop. neg chained prop.   enumeration intersection union complement  disjunction restriction! cardinality 1..1 equivalence [>18] disjoint union value restriction keys …
  35. 35. 35 W3C standards
  36. 36. 36 PROV-O: vocabulary for provenance and traceability describe entities and activities involved in providing a resource
  37. 37. 37 W3C standards
  38. 38. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing
  39. 39. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing How do we improve our interactions with a semantic and social Web ? • capture and model the users' characteristics? • represent and reason with the users’ profiles? • adapt the system behaviors as a result? • design new interaction means? • evaluate the quality of the interaction designed? 
  40. 40. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing How can we manage the collective activity on social media? • analyze the social interaction practices and the structures in which these practices take place? • capture the social interactions and structures? • formalize the models of these social constructs? • analyze & reason on these models of social activity? 
  41. 41. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing What are the needed schemas and extensions of the semantic Web formalisms for our models? • formalisms best suited for the models of the challenges 1 & 2 ? • limitations and extensions of existing formalisms? • missing schemas, ontologies, vocabularies? • links and combinations of existing formalisms? 
  42. 42. RESEARCH CHALLENGES 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing What are the algorithms required to analyze and reason on the heterogeneous graphs we obtained? • analyze graphs of different types and their interactions? • support different graph life-cycles, calculations and characteristics? • assist different tasks of our users? • design the Web architecture to deploy this? 
  43. 43. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing      G2 H2  G1 H1 < Gn Hn
  44. 44. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing  • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns     G2 H2  G1 H1 < Gn Hn
  45. 45. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing   • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis    G2 H2  G1 H1 < Gn Hn
  46. 46. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing    • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation   G2 H2  G1 H1 < Gn Hn
  47. 47. METHODS AND TOOLS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing     • KB interaction (context, Q&A, exploration, …) • user models, personas, emotion capture • mockups, evaluation campaigns • community detection, labelling • collective personas, coordinative artifacts • argumentation theory, sentiment analysis • ontology-based knowledge representation • formalisms: typed graphs, uncertainty • knowledge extraction, data translation • graph querying, reasoning, transforming • induction, propagation, approximation • explanation, tracing, control, licensing, trust
  48. 48. cultural data is a weapon of mass construction
  49. 49. PUBLISHING  extract data (content, activity…)  provide them as linked data DBPEDIA.FR (extraction, end-point) 180 000 000 triples models Web architecture [Cojan, Boyer et al.]
  50. 50. PUBLISHING e.g. DBpedia.fr 185 377 686 RDF triples extracted and mapped
  51. 51. PUBLISHING e.g. DBpedia.fr number of queries per day 70 000 on average 2.5 millions max 185 377 686 RDF triples extracted and mapped public dumps, endpoints, interfaces, APIs…
  52. 52. PUBLISHING e.g. DBpedia.fr 2.5 billion RDF triples of versioning activities <http://fr.dbpedia.org/Réaux> a prov:Revision ; swp:isVersion "96"^^xsd:integer ; dc:created "2005-08-05T07:27:07"^^xsd:dateTime ; dc:modified "2015-01-06T10:26:35"^^xsd:dateTime ; dbfr:uniqueContributorNb 58 ; dbfr:revPerYear [ dc:date "2005"^^xsd:gYear ; rdf:value "2"^^xsd:integer ] ; … dbfr:revPerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "1"^^xsd:integer ] ; dbfr:revPerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "1"^^xsd:integer ] ; … dbfr:revPerMonth [ dc:date "01/2015"^^xsd:gYearMonth ; rdf:value "1"^^xsd:integer ] ; dbfr:averageSizePerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ; … dbfr:averageSizePerYear [ dc:date "2015"^^xsd:gYear ; rdf:value "4767"^^xsd:float ] ; dbfr:averageSizePerMonth [ dc:date "08/2005"^^xsd:gYearMonth ; rdf:value "3060"^^xsd:float ] ; … dbfr:averageSizePerMonth [ dc:date "01/2015"^^xsd:gYearMonth ; rdf:value "4767"^^xsd:float ] ; dbfr:size "4767"^^xsd:integer ; dc:creator [ foaf:name "DasBot" ; rdf:type scoro:ComputationalAgent ] ; sioc:note "Robot : Remplacement de texte automatisé (- [[commune française| +[[commune (France)|)"^^xsd:string ; prov:wasRevisionOf <https://fr.wikipedia.org/w/index.php?title=Réaux&oldid=103 441506> ; prov:wasAttributedTo [ foaf:name "Escarbot" ; a prov:SoftwareAgent ] . [Corby, Boyer et al.]
  53. 53. DBPEDIA & STTL declarative transformation language from RDF to text formats (XML, JSON, HTML, Latex, natural language, GML, …) [Cojan, Faron-Zucker et al.]
  54. 54. “searching” comes in many flavors
  55. 55. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples [Cojan, Boyer et al.]
  56. 56. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO semantic spreading activation new evaluation protocol [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.]
  57. 57. SEARCHING  exploratory search  question-answering DBPEDIA.FR (extraction, end-point) 180 000 000 triples DISCOVERYHUB.CO QAKiS.ORG semantic spreading activation new evaluation protocol [D:Work], played by [R:Person] [D:Work] stars [R:Person] [D:Work] film stars [R:Person] starring(Work, Person) linguistic relational pattern extraction named entity recognition similarity based SPARQL generation select * where { dbpr:Batman_Begins dbp:starring ?v . OPTIONAL {?v rdfs:label ?l filter(lang(?l)="en")} } [Cabrio et al.] [Marie, Giboin, Palagi et al.] [Cojan, Boyer et al.]
  58. 58. SEARCHING e.g. DiscoveryHub
  59. 59. semantic spreading activation SIMILARITY FILTERING discoveryhub.co
  60. 60. SEARCHING e.g. QAKIS
  61. 61. ALOOF: robots learning by reading on the Web Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  62. 62. ALOOF: robots learning by reading on the Web  First Object Relation Knowledge Base: 46.212 co-mentions, 49 tools, 14 rooms, 101 “possible location” relations,696 tuples <entity, relation, frame>  Evaluation: 100 domestic implements, 20 rooms, Crowdsourcing 2000 judgements  Object co-occurrence for coherence building Annie cuts the bread in the kitchen with her knife dbp:Knife aloof:Location dbp:Kitchen [Cabrio, Basile et al.]
  63. 63. BROWSING e.g. SMILK plugin [Lopez, Cabrio, et al.]
  64. 64. BROWSING e.g. SMILK plugin [Nooralahzadeh, Cabrio, et al.]
  65. 65. MODELING USERS  individual context  social structures
  66. 66. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology [Costabello et al.]
  67. 67. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees [Costabello et al.] [Meng et al.]
  68. 68. MODELING USERS  individual context  social structures PRISSMA prissma:Context 0 48.86034 -2.337599 200 geo:lat geo:lon prissma:radius 1 :museumGeo prissma:Environment 2 { 3, 1, 2, { pr i ssma: poi } } { 4, 0, 3, { pr i ssma: envi r onment } } :atTheMuseum error tolerant graph edit distance context ontology OCKTOPUS tag, topic, user distribution tag and folksonomy restructuring with prefix trees EMOCA&SEEMPAD emotion detection & annotation [Villata, Cabrio et al.] [Costabello et al.] [Meng et al.]
  69. 69. DEBATES & EMOTIONS #IRC
  70. 70. DEBATES & EMOTIONS #IRC argument rejection attacks-disgust
  71. 71. MODELING USERS e.g. e-learning & serious games [Rodriguez-Rocha, Faron-Zucker et al.]
  72. 72. LUDO: ontological modeling of serious games Learning Game KB Player’s profile & context Game design [Rodriguez-Rocha, Faron-Zucker et al.]
  73. 73. QUERY & INFER  graph rules and queries  deontic reasoning  induction
  74. 74. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn abstract graph machine STTL [Corby, Faron-Zucker et al.]
  75. 75. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.]
  76. 76. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.] [Tettamanzietal.]
  77. 77. QUERY & INFER  graph rules and queries  deontic reasoning  induction CORESE LICENTIA INDUCTION  & G2 H2  & G1 H1 < Gn Hn RATIO4TA predict & explain find missing knowledge license compatibility and composition abstract graph machine STTL [Corby, Faron-Zucker et al.] [Hasan et al.] [Tettamanzietal.] [Villata et al.]
  78. 78. QUERY & INFER e.g. CORESE/KGRAM [Corby et al.]
  79. 79. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O RIF-BLD SPARQL RIFSPARQL ?x ?x C C List(T1. . . Tn) (T1’. . . Tn’) OpenList(T1. . . Tn T) External(op((T1. . . Tn))) Filter(op’ (T1’. . . Tn’)) T1 = T2 Filter(T1’ =T2’) X # C X’ rdf:type C’ T1 ## T2 T1’ rdfs:subClassOf T2’ C(A1 ->V1 . . .An ->Vn) C(T1 . . . Tn) AND(A1. . . An) A1’. . . An’ Or(A1. . . An) {A1’} …UNION {An’} OPTIONAL{B} Exists ?x1 . . . ?xn (A) A’ Forall ?x1 . . . ?xn (H) Forall ?x1 . . . ?xn (H:- B) CONSTRUCT { H’} WHERE{ B’} restrictions equivalence no equivalence extensions
  80. 80. FO  R  GF  GR mapping modulo an ontology car vehicle car(x)vehicle(x) GF GR vehicle car O truck car         121 ,, )(2121 2 21 2 1 ),(let;),( ttttt tdepthHc ttlttHtt c   ),(),(min),(let),( 21,21 2 21 21 ttlttlttdistHtt cc HHttttc   vehicle car O truck t1(x)t2(x)  d(t1,t2)< threshold
  81. 81. QUERY & INFER e.g. Gephi+CORESE/KGRAM
  82. 82. QUERY & INFER e.g. Licencia [Villata et al.]
  83. 83. EXPLAIN  justify results  predict performances [Hasan et al.]
  84. 84. EXPLAIN  justify results  predict performances [Hasan et al.]
  85. 85. 88 Web 1.0, 2.0, 3.0 …
  86. 86. 89 price convert? person other sellers? Web 1.0, 2.0, 3.0 …
  87. 87. WIMMICS 1. user & interaction design 2. communities & social networks 3. linked data & semantic Web 4. reasoning & analyzing epistemic communitieslinked data usages and introspection contributions and traces
  88. 88. 91 Toward a Web of Programs “We have the potential for every HTML document to be a computer — and for it to be programmable. Because the thing about a Turing complete computer is that … anything you can imagine doing, you should be able to program.” (Tim Berners-Lee, 2015)
  89. 89. 92 one Web … a unique space in every meanings: data persons documents programs metadata
  90. 90. 93 Toward a Web of Things
  91. 91. WIMMICSWeb-instrumented man-machine interactions, communities and semantics     Fabien Gandon - @fabien_gandon - http://fabien.info he who controls metadata, controls the web and through the world-wide web many things in our world. Technical details: http://bit.ly/wimmics-papers

×