Fußball WM 2014 in Brasilien
Logos, Stadien, Sehenwürdigkeiten
aus dem WM –Land
modelliert mit GeoGebra
We hope you enjoy
our presentation!
Thanks to the Spanish team for the basic idea!
Logo 1 WM 2014 in Brasilien
Copacabana
Im Stadion
Maracama Stadion
Zuckerhut in Rio
Architektur in Brasilien
Nationalstadion in Brasilien
Logo 2 der WM in Brasilien
Logo 3 der WM 2014 in Brasilien
Zuckerhut
Ponte da Amizade
Nationalstadion Brasilien
Maracama Stadion
Ellipse mit 5 Punkten
Rio de Janeiro
Museumsbau in Brasilien
Zuckerhut und Copacobana
Logo 4 der WM in Brasilien
Das Theater in Rio
Notes from the teacher
 This is a combination of work of students grade 10 and grade 8.
 Students of grade 10 know deriv...
WM 2014 with GeoGebra
Upcoming SlideShare
Loading in …5
×

WM 2014 with GeoGebra

806 views

Published on

Published in: Education, Travel, Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
806
On SlideShare
0
From Embeds
0
Number of Embeds
529
Actions
Shares
0
Downloads
1
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

WM 2014 with GeoGebra

  1. 1. Fußball WM 2014 in Brasilien Logos, Stadien, Sehenwürdigkeiten aus dem WM –Land modelliert mit GeoGebra
  2. 2. We hope you enjoy our presentation! Thanks to the Spanish team for the basic idea!
  3. 3. Logo 1 WM 2014 in Brasilien
  4. 4. Copacabana
  5. 5. Im Stadion
  6. 6. Maracama Stadion
  7. 7. Zuckerhut in Rio
  8. 8. Architektur in Brasilien
  9. 9. Nationalstadion in Brasilien
  10. 10. Logo 2 der WM in Brasilien
  11. 11. Logo 3 der WM 2014 in Brasilien
  12. 12. Zuckerhut
  13. 13. Ponte da Amizade
  14. 14. Nationalstadion Brasilien
  15. 15. Maracama Stadion Ellipse mit 5 Punkten
  16. 16. Rio de Janeiro
  17. 17. Museumsbau in Brasilien
  18. 18. Zuckerhut und Copacobana
  19. 19. Logo 4 der WM in Brasilien
  20. 20. Das Theater in Rio
  21. 21. Notes from the teacher  This is a combination of work of students grade 10 and grade 8.  Students of grade 10 know derivatives, how to calculate equations of parabola and know different methods of approximation. They might solve – if they are „forced“ – a system of linear equations.  Students of grade 8 can determine linear functions, are more familiar with GeoGebra and know different types of cones (with-out any equation). They got to know when to approximate by a polynom (from degree as low as possible) with the command polygon[A,B, C, ….] or by a cone with 5 chosen points.  As it was at the end of the school year – all tests done and football world championship – it had been a task that both groups liked very much. 6/2014, Monika Schwarze, PGU Unna

×