Successfully reported this slideshow.
Your SlideShare is downloading. ×

OS16 - 4.P3.c The U.S. Animal Movement Model (USAMM), A Bayesian Approach to Modeling of a Partially Observed Continental Scale Livestock Movement Network - P. Brommesson

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 23 Ad

OS16 - 4.P3.c The U.S. Animal Movement Model (USAMM), A Bayesian Approach to Modeling of a Partially Observed Continental Scale Livestock Movement Network - P. Brommesson

Download to read offline

OS16 - Open Session 2016
Cascais, Portugal
26 - 28 /10/2016

EuFMD Sessions\Open Session\Archive-2018\Open 2016 Cascais- Portugal\PPT presentations\

OS16 - Open Session 2016
Cascais, Portugal
26 - 28 /10/2016

EuFMD Sessions\Open Session\Archive-2018\Open 2016 Cascais- Portugal\PPT presentations\

Advertisement
Advertisement

More Related Content

Similar to OS16 - 4.P3.c The U.S. Animal Movement Model (USAMM), A Bayesian Approach to Modeling of a Partially Observed Continental Scale Livestock Movement Network - P. Brommesson (20)

More from EuFMD (20)

Advertisement

Recently uploaded (20)

OS16 - 4.P3.c The U.S. Animal Movement Model (USAMM), A Bayesian Approach to Modeling of a Partially Observed Continental Scale Livestock Movement Network - P. Brommesson

  1. 1. Open Session of the EuFMD - Cascais –Portugal 26-28 October 2016 The U.S. Animal Movement Model (USAMM) - A Bayesian approach to modeling a partially observed continental scale livestock movement network Peter Brommesson, Linköping University
  2. 2. Introduction • Computer simulations of spread of diseases can: – Localize hotspots – Evaluate control strategies – Inform policy regarding preventive actions • Transport data – EU legislations require (computerized) records of cattle transports – USA , Interstate Certificate of Veterinary Inspection (ICVI)
  3. 3. Introduction ctd. • Data – 10% ICVI – ~19,000 transports • Transport network – Nodes = US. Counties (3108) – Edges = Cattle transports • Parameterized kernel model • Generate new complete networks
  4. 4. Model basics • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  5. 5. Model basics • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  6. 6. Model basics ctd. • Estimate parameter distribution in a Hierarchical Bayesian framework (MCMC simulations) • Generating from parameter dist. Uncertainty in predictions is accounted for (Bayesian vs ML)
  7. 7. Distance dependence ( ) ij bd a e  Different kernel shapes Distance Kernelvalue Displacement Kernel = (Brommesson et al. 2016)
  8. 8. Intrastate estimation Intrastate estimation Intrastate trp estimation = #interstate trp + kernel
  9. 9. Base model (USAMMv1) • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  10. 10. USAMMv1 results Overall structure Betweenness Betweenness Density (Lindström et al. 2013)
  11. 11. USAMMv1 disadvantages • Underestimates #counties with many transports • No seasonality included • Lacks information on infrastructure
  12. 12. Extended model (USAMMv2) • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  13. 13. Extended model (USAMMv2) ctd. • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  14. 14. Extended model (USAMMv2) ctd. • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  15. 15. Extended model (USAMMv2) ctd. • 100% Transports • Estimates per quarter ‒ Attraction estimated ‒ Covariates ‒ 10% Super nodes USAMMv2 • 100% Transports • State spec. kernels • Number of trp per state USAMMv1 (Lindström et al. 2013) • 10% ICVI • Number of farms • Historical inflow Data
  16. 16. Three USAMMv2 models • USAMMv1 + Attraction (no covariates) • USAMMv1 + Attraction + additional covariates (covariates only) • USAMMv1 + Attraction + covariates + super nodes ( covariates and super nodes)
  17. 17. Max degree No covariates Covariates only Covariates + Super Nodes In-degreeOut-degree
  18. 18. Degree distribution No covariates Covariates only Covariates + Super Nodes In-degreeOut-degree DensityDensity Degree Degree Degree
  19. 19. Out-degree 1000 generated networks, median degree DataQ1 Q2 Q3 Q4 Q1 Q3 Q4 Q2 Generated
  20. 20. In-degree 1000 generated networks, median degree Q1 Q1 Q2 Data GeneratedQ2 Q3 Q4 Q3 Q4
  21. 21. Visualization https://usamm-gen-net.shinyapps.io/usamm-gen-net/
  22. 22. Summary • Better prediction of max degrees • Better prediction of degree distribution, especially highly connected nodes • Capture the total state and quarter specific in/out degree • Seasonal effects less than we anticipated
  23. 23. Acknowledgements • Department of Physics, Chemistry and Biology, Linköping University – T. Lindström – S. Sellman – U. Wennergren • Department of Ecology and Evolutionary Biology, University of California – M. Buhnerkempe • Department of Biology, Colorado State University – L. Beck-Johnson – E. Gorsich – C. Hallman – K. Tsao – C.T Webb • Mathematics Institute, University of Warwick – M.J. Tildesley • USDA APHIS Veterinary Services, Center for Epidemiology and Animal Health – R. S. Miller – K. Portacci – D. Grear • Funding – Foreign Animal Disease Modeling Program, Science and Technology Directorate, U.S. Department of Homeland Security (Contract HSHQDC-13-C-B0028) – European research area: animal health and welfare (ANIHWA; https://www.anihwa.eu) Contract No. ANR-13-ANWA-0007-03 (LIVEepi)

Editor's Notes

  • .

×