Upcoming SlideShare
×

# Module 2 lesson 6

922 views

Published on

Published in: Technology, Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
922
On SlideShare
0
From Embeds
0
Number of Embeds
387
Actions
Shares
0
2
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Module 2 lesson 6

1. 1. Module 2 Lesson 6.notebook November 06, 2013 11/6/13 Module 2, Lesson 6 The Distance between two rational numbers HW: Lesson 6 Problem Set Quiz Friday Do Now: Exit Ticket For Lesson 5 1
2. 2. Module 2 Lesson 6.notebook November 06, 2013 ­2 ­2 +7 = 5 5 + (­9) = ­4 ­2 ­ (­7) = 5 ­8 + (­6) =  ­14 ­14 + 2 = ­12 2
3. 3. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 3
4. 4. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 4
5. 5. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key ­2 + 16 18 + (­26) ­14 + (­23)  1 ­ 2 = 1 + (­2) 30 + 45 5
6. 6. Module 2 Lesson 6.notebook November 06, 2013 Problem Set 5 Answer Key 6
7. 7. Module 2 Lesson 6.notebook November 06, 2013 7
8. 8. Module 2 Lesson 6.notebook November 06, 2013 Discussion: 1.) In life, at any given moment, will we always be able to use a number line to find the distance between two rational numbers? Is it the most efficient way to calculate distance between two points? 2.) What represents the distance between a number and zero on the number line? 3.) If the distance between 5 and 0 can be calculated using 5 - 0 or 5 , do you think we might be able to calculate the distance between -4 and 5 using absolute value? 8
9. 9. Module 2 Lesson 6.notebook November 06, 2013 8 9
10. 10. Module 2 Lesson 6.notebook November 06, 2013 ­6 ­ (­10) = ­6 + 10 = 4 10
11. 11. Module 2 Lesson 6.notebook November 06, 2013 |­3 ­ 2| = |­3 + (­2)| = |­5| = 5 11
12. 12. Module 2 Lesson 6.notebook November 06, 2013 |­200 ­ 580| = |­200 + (­580)|  = |­780| = 780 780 increase 12
13. 13. Module 2 Lesson 6.notebook November 06, 2013 780 ­780 ft, 780 ft decrease 13
14. 14. Module 2 Lesson 6.notebook ­10 ­9 ­8 ­7 ­6 ­5 November 06, 2013 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 14
15. 15. Module 2 Lesson 6.notebook November 06, 2013 |­7 ­ (­4)| = |­7 + 4| = |­3| = 3 ­10 ­9 ­8 ­7 ­6 ­5 ­4 ­3 ­2 ­1 0 1 2 3 4 5 6 7 8 9 10 |­18 ­ 15| = |­18 + (­15)| = 33 ­33 140 ­ (­40) =  140 + 40 = ­180 15
16. 16. Module 2 Lesson 6.notebook November 06, 2013 CLOSING: • How can we use a number line to find the distance between two rational numbers? • What does it mean to find the absolute value of a number ? • Is it possible to use absolute value to find distance between a number, p, and another number, =, that isnot zero ? If so how? • Is distance always positive? Is change always positive? 16
17. 17. Module 2 Lesson 6.notebook November 06, 2013 17