Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Metastability and self-oscillations in superconducting microwave<br />resonators integrated with a dc-SQUID<br />Eran Sege...
Quantum Measurements of Solid-State Devices<br />V<br /><ul><li>Direct measurements of solid-state quantum devices has man...
Indirect measurements approach:
Resonance Readout  - The quantum device is coupled to a superconducting resonator.
The state of the device modifies the resonance frequencies.
Readout is done by probing these resonance frequencies.</li></ul>Quantum Device<br />Input Probe<br />Output Signal<br />R...
Resonance readout and Thermal Instability<br />hot spot<br />unstable<br />1µm<br />Resonator<br /><ul><li>Test bed for re...
Heat transfer to a coolant
Heat production:</li></ul>A. VI. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987)<br />
Self-Oscillations<br />S.C Phase<br />Pres<br />N.C Phase<br />T<br /><ul><li>When embedded in a resonator, the resonator ...
Measurement Setup<br />Synthesizer<br />~<br />Spectrum<br />Oscilloscope<br />Analyzer<br />Feed Line<br /><ul><li> E. Se...
 E. Segev et al. , J. Phys.: Condense. Matter 19, (2007)</li></li></ul><li>Self-Modulation - Time Domain I<br />Time Domai...
Self-Modulation - Time Domain II<br />Time Domain @ -27.85[dBm] Pump Power<br />Time Domain<br />40<br />20<br />|B|2<br /...
Self-Modulation - Time Domain III<br />Time Domain<br />~<br />Frequency Domain<br />Spectrum<br />Oscillo-<br />scope<br ...
Self-Modulation - Time Domain IV<br />Time Domain<br />~<br />Frequency Domain<br />Spectrum<br />Oscillo-<br />scope<br /...
Self-Modulation - Time Domain V<br />Time Domain @ -19.35[dBm] Pump Power<br />Time Domain<br />40<br />20<br />|B|2<br />...
Self-Modulation – Power Dependence<br />~<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />
System Model<br />cooling power<br />heating power<br />Equations of motion<br />Control parameters<br />Input signal ampl...
Stability diagram<br />mono-stable (N)<br />bi-stable<br />unstable<br />mono-stable (S)<br />MB is superconducting<br />M...
Theory vs. Experiment – Time Domain<br />mono-stable (N)<br />bistable<br />bistable<br />Un-s<br /><br />mono-stable (S)...
Theory vs. Experiment – Threshold phenomenon<br />mono-stable (N)<br />bistable<br />bistable<br />un-stable<br />mono-sta...
Thermal instability as sensitive detection mechanism<br />mono-stable (N)<br />bistable<br />bistable<br />un-stable<br />...
Amplification mechanism<br />un-s<br />x<br />Pref [dBm]<br />Pref [a.u.]<br />ms<br />Experiments<br />Simulation<br />St...
E. Segev et al., IEEE Trans. Appl. Supercond., 17 (2007). </li></li></ul><li>Fresnel Zone Plate<br />NbN meander<br />NbN<...
Low noise non-linearity<br /><ul><li> Thermal (resistive) driven nonlinearity.</li></ul>Input Probe<br />Output Signal<br ...
 Self-Oscillations.
 Strong non-linear amplification and detection
But – Thermal noise creates a major drawback.</li></ul>Solution – Inductive nonlinearity<br />Input Probe<br />Output Sign...
 In practice – SQUID dynamics might be hysteretic and dissipative.</li></li></ul><li>SQUID: The ideal nonlinear Inductor<b...
Resonance Frequency Tuning <br />Input Probe<br />Output Signal<br />S11 vs. magnetic field<br />Magnetic Flux [a.u.]<br /...
Simulation of flux dependant self-oscillations<br />~<br />Spectrum<br />Analyzer<br /><ul><li>Resonance mode amplitude EOM
Thermal balance EOM</li></ul>Experiment<br />Simulation<br />
Physical model of DC-SQUID<br />Squid Potential:<br />Sine Term<br />Quadric Term<br />Source<br />Internal variable<br />...
DC-SQUID Potential – Roll of Hysteresis Parameter <br />Sine Term<br />Quadric Term<br />Source<br />Hysteretic parameter ...
DC-SQUID Potential – Roll of control parameters<br />Tilt by Current<br />Control parameters<br />Tilt by magnetic Flux<br />
DC-SQUID Equations of Motions<br />DC-SQUID Circuit Model<br />Circuit model includes:<br /><ul><li>RJ – Shunting resistor.
CJ – JJ capacitance.
L – Self-inductance.</li></ul>Control parameters<br />Kirchhoff  Equations<br />Internal variable<br />DC-SQUID EOM<br />P...
Stability boundaries – Phase space<br />Hessian<br />Local Stable Zones<br />Local Extremum Points<br />Stability Diagram ...
Stability boundaries – Alternating excitation<br />6<br />2<br />1<br />4<br />0<br />-1<br />2<br />-2<br />0<br />F<br /...
Numerical results<br />Periodic dissipative static zones<br />
Periodic dissipative static zone<br />2<br />1<br />0<br />F<br />/<br />0<br />x<br />F<br />-1<br />-2<br />0.96<br />0....
Periodic dissipative static zone<br />Experimental data Vs. Simulation<br />Experiment<br />Simulation<br /><ul><li> E. Se...
Double Threshold to Oscillatory Zone <br />Experimental Results<br />Simulation Results<br />Split Threshold<br />
Hybrid zones<br />Experimental Results<br />SQUID Voltage<br />Noise Level<br />TD Statistics<br />
Parametric Excitation Of Superconducting Resonator<br />Synthesizer<br />~<br />~<br />Spectrum<br />Analyzer<br /><ul><li...
The reflected power has many sidebands originated by the nonlinear mixing</li></li></ul><li>Stability Diagram for Parametr...
 Only flux excitation: </li></ul>Stability diagram in the plane of________<br />Periodic dissipative static zone<br />Peri...
Boundaries between local stable zones are observed in the periodic non-dissipative zone.
The variance of the  SQUID inductance within a local stable state is observed.</li></ul>Stability diagram in the plane of<...
Parametric excitation – Experimental results<br /><ul><li> Many features agree between simulation and experimental results...
Upcoming SlideShare
Loading in …5
×

Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID

851 views

Published on

  • Be the first to comment

  • Be the first to like this

Metastability and self-oscillations in superconducting microwave resonators integrated with a dc-SQUID

  1. 1. Metastability and self-oscillations in superconducting microwave<br />resonators integrated with a dc-SQUID<br />Eran Segev<br />Quantum Engineering Laboratory, Technion, Israel<br />
  2. 2. Quantum Measurements of Solid-State Devices<br />V<br /><ul><li>Direct measurements of solid-state quantum devices has many drawbacks.
  3. 3. Indirect measurements approach:
  4. 4. Resonance Readout - The quantum device is coupled to a superconducting resonator.
  5. 5. The state of the device modifies the resonance frequencies.
  6. 6. Readout is done by probing these resonance frequencies.</li></ul>Quantum Device<br />Input Probe<br />Output Signal<br />Resonance Curve<br />S12<br />Input Probe<br />Output Signal<br />Freq<br />
  7. 7. Resonance readout and Thermal Instability<br />hot spot<br />unstable<br />1µm<br />Resonator<br /><ul><li>Test bed for resonance readout – Superconducting micro-bridge as artificial weak link. </li></ul>Feed line<br />Weak link : Micro-Bridge<br /><ul><li>Nonlinear thermal instability is expected under dc current bias.</li></ul>Heat production<br />Cooling power<br /><ul><li>Heat balance condition:
  8. 8. Heat transfer to a coolant
  9. 9. Heat production:</li></ul>A. VI. Gurevich and R. G. Mints, Rev. Mod. Phys. 59, 941 (1987)<br />
  10. 10. Self-Oscillations<br />S.C Phase<br />Pres<br />N.C Phase<br />T<br /><ul><li>When embedded in a resonator, the resonator applies negative feedback to the thermal instability mechanism, leading to self-oscillations. </li></ul>SC Threshold<br />NC Threshold<br />Power<br />Oscillation Cycle<br />Energy Buildup + Temperature increase<br />Switching the NC phase at T >= Tc<br />Energy relaxation + Temperature cool down<br />Switching back to the SC phase at T <= Tc<br />
  11. 11. Measurement Setup<br />Synthesizer<br />~<br />Spectrum<br />Oscilloscope<br />Analyzer<br />Feed Line<br /><ul><li> E. Segev et al., Euro. Phys. Lett. 78, (2007)
  12. 12. E. Segev et al. , J. Phys.: Condense. Matter 19, (2007)</li></li></ul><li>Self-Modulation - Time Domain I<br />Time Domain @ -28.01[dBm] Pump Power<br />Time Domain<br />40<br />20<br />|B|2<br />0<br />-20<br />0<br />2<br />4<br />6<br />8<br />10<br />Time [<br /><br />Sec]<br />Frequency domain<br />~<br />Frequency Domain<br />-40<br />Power [dBm]<br />-60<br />-80<br />-50<br />0<br />50<br />Spectrum<br />Oscillo-<br />Frequency [MHz]<br />scope<br />Analyzer<br />
  13. 13. Self-Modulation - Time Domain II<br />Time Domain @ -27.85[dBm] Pump Power<br />Time Domain<br />40<br />20<br />|B|2<br />0<br />-20<br />0<br />2<br />4<br />6<br />8<br />10<br />Time [<br /><br />Sec]<br />Frequency domain<br />~<br />Frequency Domain<br />-40<br />Power [dBm]<br />-60<br />-80<br />-50<br />0<br />50<br />Frequency [MHz]<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />
  14. 14. Self-Modulation - Time Domain III<br />Time Domain<br />~<br />Frequency Domain<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />Time Domain @ -27.72[dBm] Pump Power<br />40<br />20<br />|B|2<br />0<br />-20<br />0<br />200<br />400<br />600<br />800<br />1000<br />Time [nSec]<br />Frequency domain<br />-30<br />-40<br />Power [dBm]<br />-50<br />-60<br />-70<br />-50<br />0<br />50<br />Frequency [MHz]<br />
  15. 15. Self-Modulation - Time Domain IV<br />Time Domain<br />~<br />Frequency Domain<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />Time Domain @ -21.81[dBm] Pump Power<br />40<br />20<br />|B|2<br />0<br />-20<br />0<br />100<br />200<br />300<br />400<br />500<br />Time [nSec]<br />Frequency domain<br />-40<br />Power [dBm]<br />-60<br />-80<br />-50<br />0<br />50<br />Frequency [MHz]<br />
  16. 16. Self-Modulation - Time Domain V<br />Time Domain @ -19.35[dBm] Pump Power<br />Time Domain<br />40<br />20<br />|B|2<br />0<br />-20<br />0<br />100<br />200<br />300<br />400<br />500<br />Time [nSec]<br />Frequency domain<br />~<br />Frequency Domain<br />-40<br />Power [dBm]<br />-60<br />-80<br />-50<br />0<br />50<br />Frequency [MHz]<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />
  17. 17. Self-Modulation – Power Dependence<br />~<br />Spectrum<br />Oscillo-<br />scope<br />Analyzer<br />
  18. 18. System Model<br />cooling power<br />heating power<br />Equations of motion<br />Control parameters<br />Input signal amplitude<br /><ul><li>Resonance mode amplitude EOM</li></ul>Input signal frequency<br />Stored amplitude (energy)<br />Force<br />Internal variables<br />Mode Amplitude<br />Micro-Bridge Temperature<br /><ul><li>Thermal balance EOM</li></ul>Parameters<br />Coupling rate to environment<br />Coupling rate to losses<br />Resonance frequency<br />Heat capacity of micro-bridge<br />Heat Transfer rate<br />
  19. 19. Stability diagram<br />mono-stable (N)<br />bi-stable<br />unstable<br />mono-stable (S)<br />MB is superconducting<br />MB is normal-conducting<br />MB is either super or normal-conducting.<br />MB oscillates between super and normal-conducting states.<br />bi-stable<br /><ul><li>The shape of the stability diagram may vary depending on the tunability strength of the resonance frequency.</li></li></ul><li>Self-Modulation Frequency<br />E15<br />ms (N)<br />bs<br />bs<br />us<br />ms (S)<br />bs<br />m-s (N)<br />bs<br />E16<br />us<br />m-s (S)<br />Self-Oscillation Frequency<br />Resonance frequency is negligibly tuned.<br />E15<br />2. Resonance frequency is substantially tuned.<br />E16<br />
  20. 20. Theory vs. Experiment – Time Domain<br />mono-stable (N)<br />bistable<br />bistable<br />Un-s<br /><br />mono-stable (S)<br />working point<br /><br />Theoretical Results<br />Experimental Results<br />0 <br />0.2<br />0.4<br />0.6<br />0.8<br />1 <br /> 0 <br />0.2<br />0.4<br />0.6<br />0.8<br /> 1 <br />0.2<br />0.2<br />(iii)<br />(vii)<br />0<br />0<br />-0.2<br /> [a.u.]<br />-0.2<br />0 <br />0.1<br />0.2<br />0.3<br />0.4<br />0.5<br />0 <br />0.1<br />0.2<br />0.3<br />0.4<br />0.5<br />0.4<br />0.4<br />(ii)<br />(vi)<br />ref<br />0.2<br />P<br />0.2<br />0<br />0<br />0 <br />0.2<br />0.4<br />0.6<br />0.8<br />1 <br />0 <br />0.2<br />0.4<br />0.6<br />0.8<br />1 <br />t<br /> [<br />m<br />Sec]<br />
  21. 21. Theory vs. Experiment – Threshold phenomenon<br />mono-stable (N)<br />bistable<br />bistable<br />un-stable<br />mono-stable (S)<br />working point<br />Theoretical Results<br />Experimental Results<br />Noise is added to simulation<br />Noise is added to simulation<br /><br /><br />
  22. 22. Thermal instability as sensitive detection mechanism<br />mono-stable (N)<br />bistable<br />bistable<br />un-stable<br />mono-stable (S)<br />~<br />Oscilloscope<br />Spectrum<br />Analyzer<br />The thermal non-linearity in our device has two advantages in terms of detection.<br />The response of the system to a detectable stimulation is fast and strong.<br />The system has a natural feedback mechanism that drives it back to its original state once the response to the stimulation is ended.<br />Weak AM modulation<br /><ul><li>The AM creates small oscillations around the working point.</li></ul>x<br />x<br />
  23. 23. Amplification mechanism<br />un-s<br />x<br />Pref [dBm]<br />Pref [a.u.]<br />ms<br />Experiments<br />Simulation<br />Strongest amplification at the threshold of self-oscillations<br /><ul><li> E. Segev et al., Phys Rev B. 77 (2008)</li></li></ul><li>Non-Linear Optical detection<br />Synthesizer<br />~<br />Spectrum<br />Analyzer<br />The amplitude modulation is replaced by modulated IR laser illumination <br />Modulated IR Illumination<br />Threshold of Self-Oscillations<br /><ul><li>E. Segev et al., IEEE Trans. Appl. Supercond., 16(2006).
  24. 24. E. Segev et al., IEEE Trans. Appl. Supercond., 17 (2007). </li></li></ul><li>Fresnel Zone Plate<br />NbN meander<br />NbN<br />NbN<br />NbN meander<br />Optical fiber<br />1550 nm<br />Fresnel zone plate<br />Optical fiber<br />1550 nm<br />Superconducting detectors must be kept small. Therefore:<br />Signal degraded due to light beam expansion between fiber tip and detector.<br />Cryogenic alignment between fiber and detector is needed.<br />Problem is reduced by an order of magnitude using Fresnel zone plate.<br /><ul><li> Alignment between FZP and detector is done in lithography.</li></li></ul><li>Additional thermal driven non-linear phenomena<br />Noise Squeezing<br />Mode coupling<br />Unusual escape rate<br />Period doubling and Stochastic resonance<br />Sub-Harmonics<br />
  25. 25. Low noise non-linearity<br /><ul><li> Thermal (resistive) driven nonlinearity.</li></ul>Input Probe<br />Output Signal<br /><ul><li> Strong nonlinearity.
  26. 26. Self-Oscillations.
  27. 27. Strong non-linear amplification and detection
  28. 28. But – Thermal noise creates a major drawback.</li></ul>Solution – Inductive nonlinearity<br />Input Probe<br />Output Signal<br /><ul><li>SQUIDs - Superconducting Quantum Interference Devices may behave as ideal non-dissipative inductors.
  29. 29. In practice – SQUID dynamics might be hysteretic and dissipative.</li></li></ul><li>SQUID: The ideal nonlinear Inductor<br />DC SQUID Model<br />JJ Character<br />Nano-Bridge based JJ<br />80nm<br />60nm<br />
  30. 30. Resonance Frequency Tuning <br />Input Probe<br />Output Signal<br />S11 vs. magnetic field<br />Magnetic Flux [a.u.]<br /><ul><li> E. Segev et al., Appl. Phys. Lett. 95, (2009)</li></li></ul><li>Self-Oscillations in superconducting resonator integrated with a DC-SQUID<br />Flux dependant self-oscillations<br />Flux triggering of self-oscillations<br />Self-Oscillation without magnetic flux<br />
  31. 31. Simulation of flux dependant self-oscillations<br />~<br />Spectrum<br />Analyzer<br /><ul><li>Resonance mode amplitude EOM
  32. 32. Thermal balance EOM</li></ul>Experiment<br />Simulation<br />
  33. 33. Physical model of DC-SQUID<br />Squid Potential:<br />Sine Term<br />Quadric Term<br />Source<br />Internal variable<br />Control parameters<br />Parameters_______________________<br />
  34. 34. DC-SQUID Potential – Roll of Hysteresis Parameter <br />Sine Term<br />Quadric Term<br />Source<br />Hysteretic parameter that control the degree of metastability.<br />
  35. 35. DC-SQUID Potential – Roll of control parameters<br />Tilt by Current<br />Control parameters<br />Tilt by magnetic Flux<br />
  36. 36. DC-SQUID Equations of Motions<br />DC-SQUID Circuit Model<br />Circuit model includes:<br /><ul><li>RJ – Shunting resistor.
  37. 37. CJ – JJ capacitance.
  38. 38. L – Self-inductance.</li></ul>Control parameters<br />Kirchhoff Equations<br />Internal variable<br />DC-SQUID EOM<br />Parameters<br />JJ Current<br />Coupling<br />
  39. 39. Stability boundaries – Phase space<br />Hessian<br />Local Stable Zones<br />Local Extremum Points<br />Stability Diagram in the plane of<br />Stability Diagram in the plane of <br />Local stability zones<br />
  40. 40. Stability boundaries – Alternating excitation<br />6<br />2<br />1<br />4<br />0<br />-1<br />2<br />-2<br />0<br />F<br />/<br />0<br />x<br />F<br />-2<br />-4<br />-6<br />-1<br />0<br />1<br />I<br />/I<br />x<br />c<br />$<br />$<br />$<br />$<br />Stability Diagram in the plane of<br />Stability Diagram in the plane of <br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />$<br />Periodic dissipative zone – Static stability zones were dissipation of energy occurs under periodic excitation. <br />
  41. 41. Numerical results<br />Periodic dissipative static zones<br />
  42. 42. Periodic dissipative static zone<br />2<br />1<br />0<br />F<br />/<br />0<br />x<br />F<br />-1<br />-2<br />0.96<br />0.97<br />0.98<br />0.99<br />1<br />I<br />/I<br />x<br />C<br />Periodic non-dissipative static zone<br />Free running zone<br />Periodic dissipative static zone<br />Periodic dissipative static zone<br />E38 Parameters:<br />
  43. 43. Periodic dissipative static zone<br />Experimental data Vs. Simulation<br />Experiment<br />Simulation<br /><ul><li> E. Segev et al., arxiv:1007.5225v1 (2010)</li></li></ul><li>Double Threshold to Oscillatory Zone <br />Periodic Dissipative Static zone<br />Oscillatory zone<br />Periodic non-Dissipative Static zone<br />Oscillatory zone only for negative excitation values<br />Oscillatory zone only for positive excitation values<br />
  44. 44. Double Threshold to Oscillatory Zone <br />Experimental Results<br />Simulation Results<br />Split Threshold<br />
  45. 45. Hybrid zones<br />Experimental Results<br />SQUID Voltage<br />Noise Level<br />TD Statistics<br />
  46. 46. Parametric Excitation Of Superconducting Resonator<br />Synthesizer<br />~<br />~<br />Spectrum<br />Analyzer<br /><ul><li>Magnetic flux can be used to create parametric excitation of superconducting resonators</li></ul>Current Sources<br /><ul><li>The reflected tone is measured with a spectrum analyzer.
  47. 47. The reflected power has many sidebands originated by the nonlinear mixing</li></li></ul><li>Stability Diagram for Parametric Excitation<br /><ul><li> The current through the SQUID is negligible.
  48. 48. Only flux excitation: </li></ul>Stability diagram in the plane of________<br />Periodic dissipative static zone<br />Periodic non-dissipative static zone<br />0<br /><ul><li>No Free-Running Zone</li></li></ul><li>Parametric excitation – Numerical results<br /><ul><li> The effect of SQUID inductivity emerges at high frequencies.
  49. 49. Boundaries between local stable zones are observed in the periodic non-dissipative zone.
  50. 50. The variance of the SQUID inductance within a local stable state is observed.</li></ul>Stability diagram in the plane of<br />Simulation results<br />PDSZ<br />PNDSZ<br />PDSZ<br />PNDSZ<br />
  51. 51. Parametric excitation – Experimental results<br /><ul><li> Many features agree between simulation and experimental results, but:
  52. 52. Location and shape of PDSZ threshold is different.
  53. 53. Different βL fits the PNDSZ and the PDSZ.</li></ul>Experimental results<br />Simulation results Exc. Heat Production<br />Location and shape of threshold is different<br />
  54. 54. Different βL fits the PNDSZ and the PDSZ.<br />Only heat degree of Freedom Can explain this change<br />Heat relaxation rates are comparable to the excitation frequency!<br />Threshold point to PDSZ<br />
  55. 55. DC-SQUID Model inc. heat balance equation<br />EOM for the Josephson junction phases <br />JJ Current<br />Coupling<br />represents the dependence of the kth JJ critical current of the temperature.<br />Heat balance EOMs<br />Parameters<br />Heat Production<br />Heat transfer to coolant<br />
  56. 56. Numerical results inc. Heat production<br />Stability diagram in the plane of<br />+<br />Stability Diagram in the plane of<br />First Cycle<br />Additional Cycles<br />Time domain simulation<br />Legend<br />PDSZ<br />PNDSZ<br />
  57. 57. Heat dependant Hysteresis<br /><ul><li>Transitions between local stable states produces heat.
  58. 58. The heat induces transient and average changes in the local temperature of the SQUID.</li></ul>3<br />Stability diagram in the plane of<br />2<br />0<br />F<br />1<br />/<br />dc<br /><ul><li>The hysteresis parameter depends on temperature.</li></ul>x<br />F<br />0<br />-1<br />-2<br />6.5<br />7<br />7.5<br />8<br />8.5<br />6<br />ac<br />|<br />|/<br />F<br />F<br />x<br />0<br /><ul><li>When βL decreases the stability diagram shifts to the left.</li></ul>+<br /><ul><li>The effective working point corresponds to enhanced number of transitions between LSZs.</li></li></ul><li>Future Research – Quantum Nano-Mechanics<br /><ul><li>Quantum Nano-Mechanics – emerging research field in which quantum phenomena are measured in nano-mechanical beams.
  59. 59. Question – Does stress or strain in Nano-beams affects material coherency ?
  60. 60. Method – Study the effect of a mechanical degree of freedom on the Aharonov-Bohm effect. </li></ul>1um2 AB rings, 30x90nm2 cross section.<br />I<br />V<br />Side electrode<br />Side electrode<br />1um<br />30nm-thick Aluminum<br />100nm<br />I<br />V<br />
  61. 61. Future Research – Quantum Nano-Mechanics<br /><ul><li>Question – Can nano-mechanical beam behave like two level system, showing superposition of states?
  62. 62. Method – Suspend one side of a DC-SQUID embedded in a resonator.</li></li></ul><li>Summary<br /><ul><li> Thermal (resistive) nonlinearity.</li></ul>Detection and amplification<br />Self-Oscillations<br /><ul><li>Metastable and Hysteretic SQUID</li></ul>Parametric Excitation<br />Periodic dissipative stability zone<br />Tunable resonators and self-oscillations<br />
  63. 63. Publication List<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks, 'Fast Resonance Frequency Modulation in Superconducting Stripline Resonator', IEEE Trans. Appl. Sup., 16 (3), P. 1943 (2006).<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Novel Self-Sustained Modulation in Superconducting Stripline Resonators', Europhys. Lett. 78, 57002 (2007).<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Thermal Instability and Self-Sustained Modulation in Superconducting NbN Stripline Resonators', J. Phys. Cond. Matt. 19, 096206 (2007).<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Extreme Nonlinear Phenomena in NbN Superconducting Stripline Resonators', Phys. Lett. A 366, pp. 160-164 (2007).<br />E. Segev, B. Abdo, O. Shtempluck, E. Buks, and B. Yurke'Prospects of Employing Superconducting Stripline Resonators for Studying the Dynamical Casimir Effect Experimentally', Phys. Lett. A 370, pp. 202-206 (2007).<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Utilizing Nonlinearity in a Superconducting NbN Stripline Resonator for Radiation Detection' , IEEE Trans. Appl. Sup., 17, pp. 271-274 (2007).<br />E. Segev, B. Abdo, O. Shtempluck, and E. Buks 'Stochastic Resonance with a Single Metastable State: Thermal instability in NbN superconducting stripline resonators', Phys. Rev. B 77, 012501 (2008).<br />E. Segev, O. Suchoi, O. Shtempluck, and E. Buks ‘Self-oscillations in a superconducting stripline resonator integrated with a dc superconducting quantum interference device', Appl. Phys. Lett. 95, 152509  (2009).<br />E. Segev, O. Suchoi, O. Shtempluck, Fei Xue, and E. Buks ‘Metastability in a nano-bridge based hysteretic DC-SQUID embedded in superconducting microwave resonator, arXiv:1007.5225v1 (2010).<br />
  64. 64. Publication List<br />E. Buks, S. Zaitsev, E. Segev, B. Abdo, and M. P. Blencowe, ‘Displacement Detection with a Vibrating RF SQUID: Beating the Standard Linear Limit’, Phys. Rev. E 76, 026217 (2007).<br />E. Buks,  E. Segev, S. Zaitsev, B. Abdo, and M. P. Blencowe, ‘Quantum Nondemolition Measurement of Discrete Fock States of a Nanomechanical Resonator’, EuroPhys. Lett., 81 10001 (2008).<br />B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Observation of Bifurcations and Hysteresis in Nonlinear NbN Superconducting Microwave Resonators’, IEEE Trans. Appl. Sup., 16 (4), p. 1976, (2006).<br />B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Nonlinear dynamics in the resonance line-shape of NbN superconducting resonators’,  Phys. Rev. B 73, 134513 (2006).<br />B. Abdo, E. Segev, O. Shtempluck, and E. Buks,‘Intermodulation gain in nonlinear NbN superconducting microwave resonators’,App. Phys. Lett. 88 , 022508 (2006).<br />B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Escape rate of metastable states in a driven NbN superconducting microwave resonator’, J. App. Phys., 101, 083909 (2007).<br />B. Abdo, E. Segev, O. Shtempluck, and E. Buks, ‘Signal Amplification in NbN superconducting resonators via Stochastic Resonance’, Phys. Lett. A 370, p. 449 (2007).<br />B. Abdo, O. Suchoi, E. Segev, O. Shtempluck, M. Blencowe and E. Buks, ‘Intermodulation and parametric amplification in a superconducting stripline resonator integrated with a dc-SQUID’, Europhys. Lett. 85, 68001 (2009).<br /> G. Bachar, E. Segev, O. Shtempluck, S. W. Shaw and E. Buks, ‘Noise Induced Intermittency in a Superconducting Microwave Resonator’, Europhys. Lett. 89, 17003 (2009).<br />Oren Suchoi, BaleeghAbdo, Eran Segev, Oleg Shtempluck, Miles Blencowe and Eyal Buks, ‘IntermodeDephasing in a Superconducting Stripline Resonator’, Phys. Rev. B 81, 174525 (2010).<br />

×