Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
In this presentation, I provide an overview of my research into using twitter sentiment and message volume as inputs into modeling stock price movements. A quick and dirty linear regression model using Twitter Sentiment, the Number of Tweets per day, the VIX Closing price and the VIX Price change delivers a simple model for the S&P 500 SPY ETF that has an accuracy of 57% over 6 months (tested on out-of sample data). This model was built using data from July 11 2011 to August 11 2011.