Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Guillaume Erétéo, Michel Buffa, Fabien Gandon, Olivier Corby
computer-mediated networks as social networks [Wellman, 2001]
social media landscape <ul><li>social web amplifies social network effects </li></ul>
overwhelming flow of social data monitoring notifying animating consulting
social network analysis <ul><li>proposes graph algorithms to characterize the structure of a social network, strategic pos...
social network analysis <ul><li>global metrics and structure </li></ul>community detection   distribution of actors and ac...
social network analysis <ul><li>strategic positions and actors </li></ul>degree centrality local attention
social network analysis <ul><li>strategic positions and actors </li></ul>betweenness centrality reveal broker &quot;A plac...
semantic social networks http:// sioc-project.org/node/158
(guillaume)=5 Gérard Fabien Mylène Michel Yvonne father sister mother colleague colleague d
Gérard Fabien Mylène Michel Yvonne father sister mother colleague colleague <family> d (guillaume)= 3 parent sibling mothe...
but … <ul><li>SPARQL is not expressive enough to meet SNA requirements for global metric querying of social networks (dens...
classic SNA on semantic web <ul><li>rich graph representations reduced to simple </li></ul><ul><li>untyped graphs </li></u...
semantic SNA stack <ul><li>exploit the semantic of social networks </li></ul>
SPARQL extensions <ul><li>CORESE semantic search engine implementing semantic web languages using graph-based representati...
grouping results <ul><li>number of followers of a twitter user </li></ul><ul><li>select ?y  count( ?x )  as ?indegree wher...
path extraction <ul><li>people knowing, knowing, (...) colleagues of someone </li></ul><ul><li>?x  sa (foaf:knows*/rel:wor...
full example <ul><li>closeness centrality through  knows  and  worksWith </li></ul><ul><li>select distinct ?y ?to  </li></...
Qualified component Qualified in-degree Qualified diameter Closenness Centrality Betweenness Centrality Number of geodesic...
SemSNA an ontology of SNA <ul><li>http://ns.inria.fr/semsna/2009/06/21/voc </li></ul>
add to the RDF graph <ul><li>saving the computed degrees for incremental calculations </li></ul><ul><li>CONSTRUCT </li></u...
sister mother supervisor hasSNAConcept isDefinedForProperty hasValue colleague colleague father hasCentralityDistance coll...
Ipernity
using real data <ul><li>extracting a real dataset from a relational database </li></ul><ul><li>construct { ?person1 rel:fr...
importing data with SemSNI <ul><li>http://ns.inria.fr/semsni/ </li></ul>
using real data <ul><li>ipernity.com dataset extracted in RDF 61 937 actors & 494 510 relationships </li></ul><ul><li>18 7...
performances & limits  time projections Knows 0.71 s  494 510 Favorite 0.64 s  339 428 Friend 0.31 s  136 311 Family 0.03 ...
some interpretations <ul><li>validated with managers of ipernity.com </li></ul><ul><li>friendOf ,  favorite ,  message ,  ...
some interpretations <ul><li>existence of a largest  component  in all sub networks </li></ul><ul><li>&quot;the effectiven...
conclusion <ul><li>directed typed graph structure of RDF/S  well suited to represent social knowledge & socially produced ...
perspectives <ul><li>semantic based community detection algorithm </li></ul><ul><li>SemSNA Ontology </li></ul><ul><ul><li>...
name Guillaume Erétéo holdsAccount organization mentorOf mentorOf holdsAccount manage contribute contribute answers twitte...
Upcoming SlideShare
Loading in …5
×

analysis of a real online social network using semantic web frameworks

7,272 views

Published on

research paper at #ISWC2009
http://www-sop.inria.fr/members/Fabien.Gandon/docs/ISWC2009_ereteo_et_al.pdf.

Published in: Technology

analysis of a real online social network using semantic web frameworks

  1. 1. Guillaume Erétéo, Michel Buffa, Fabien Gandon, Olivier Corby
  2. 2. computer-mediated networks as social networks [Wellman, 2001]
  3. 3. social media landscape <ul><li>social web amplifies social network effects </li></ul>
  4. 4. overwhelming flow of social data monitoring notifying animating consulting
  5. 5. social network analysis <ul><li>proposes graph algorithms to characterize the structure of a social network, strategic positions, and networking activities </li></ul>
  6. 6. social network analysis <ul><li>global metrics and structure </li></ul>community detection distribution of actors and activities density and diameter cohesion of the network
  7. 7. social network analysis <ul><li>strategic positions and actors </li></ul>degree centrality local attention
  8. 8. social network analysis <ul><li>strategic positions and actors </li></ul>betweenness centrality reveal broker &quot;A place for good ideas&quot; [Burt, 2004]
  9. 9. semantic social networks http:// sioc-project.org/node/158
  10. 10. (guillaume)=5 Gérard Fabien Mylène Michel Yvonne father sister mother colleague colleague d
  11. 11. Gérard Fabien Mylène Michel Yvonne father sister mother colleague colleague <family> d (guillaume)= 3 parent sibling mother father brother sister colleague knows
  12. 12. but … <ul><li>SPARQL is not expressive enough to meet SNA requirements for global metric querying of social networks (density, betweenness centrality, etc.). </li></ul>[San Martin & Gutierrez 2009]
  13. 13. classic SNA on semantic web <ul><li>rich graph representations reduced to simple </li></ul><ul><li>untyped graphs </li></ul>[Paolillo & Wright, 2006] foaf:knows foaf:interest
  14. 14. semantic SNA stack <ul><li>exploit the semantic of social networks </li></ul>
  15. 15. SPARQL extensions <ul><li>CORESE semantic search engine implementing semantic web languages using graph-based representations </li></ul>
  16. 16. grouping results <ul><li>number of followers of a twitter user </li></ul><ul><li>select ?y count( ?x ) as ?indegree where{ </li></ul><ul><li>?x twitter:follow ?y </li></ul><ul><li>} group by ?y </li></ul>
  17. 17. path extraction <ul><li>people knowing, knowing, (...) colleagues of someone </li></ul><ul><li>?x sa (foaf:knows*/rel:worksWith)::$path ?y </li></ul><ul><li>filter(pathLength($path) <= 4) </li></ul><ul><li>Regular expression operators are: / (sequence) ; | (or) ; * (0 or more) ; ? (optional) ; ! (not) </li></ul><ul><li>Path characteristics: i to allow inverse properties, s to retrieve only one shortest path, sa to retrieve all shortest paths. </li></ul>
  18. 18. full example <ul><li>closeness centrality through knows and worksWith </li></ul><ul><li>select distinct ?y ?to </li></ul><ul><li>pathLength($path) as ?length </li></ul><ul><li>(1/sum(?length)) as ?centrality </li></ul><ul><li>where{ </li></ul><ul><li>?y s (foaf:knows*/rel:worksWith)::$path ?to </li></ul><ul><li>}group by ?y </li></ul>
  19. 19. Qualified component Qualified in-degree Qualified diameter Closenness Centrality Betweenness Centrality Number of geodesics between from and to Qualified degree Number of geodesics between from and to going through b
  20. 20. SemSNA an ontology of SNA <ul><li>http://ns.inria.fr/semsna/2009/06/21/voc </li></ul>
  21. 21. add to the RDF graph <ul><li>saving the computed degrees for incremental calculations </li></ul><ul><li>CONSTRUCT </li></ul><ul><li>{ </li></ul><ul><li>?y semsna: hasSNAConcept _:b0 </li></ul><ul><li>_:b0 rdf:type semsna: Degree </li></ul><ul><li>_:b0 semsna: hasValue ?degree </li></ul><ul><li>_:b0 semsna: isDefinedForProperty rel:family </li></ul><ul><li>} </li></ul><ul><li>SELECT ?y count(?x) as ?degree where </li></ul><ul><li>{ </li></ul><ul><li>{ ?x rel:family ?y } </li></ul><ul><li>UNION </li></ul><ul><li>{ ?y rel:family ?x } </li></ul><ul><li>}group by ?y </li></ul>
  22. 22. sister mother supervisor hasSNAConcept isDefinedForProperty hasValue colleague colleague father hasCentralityDistance colleague colleague supervisor 4 Philippe 2 colleague supervisor Degree Guillaume Gérard Fabien Mylène Michel Yvonne Ivan Peter
  23. 23. Ipernity
  24. 24. using real data <ul><li>extracting a real dataset from a relational database </li></ul><ul><li>construct { ?person1 rel:friendOf ?person2 } </li></ul><ul><li>select sql(<server>, <driver>, <user>, <pwd>, select user1_id, user2_id from relations where rel = 1 ') as (?person1 , ?person2 ) </li></ul><ul><li>where {} </li></ul>
  25. 25. importing data with SemSNI <ul><li>http://ns.inria.fr/semsni/ </li></ul>
  26. 26. using real data <ul><li>ipernity.com dataset extracted in RDF 61 937 actors & 494 510 relationships </li></ul><ul><li>18 771 family links between 8 047 actors </li></ul><ul><li>136 311 friend links implicating 17 441 actors </li></ul><ul><li>339 428 favorite links for 61 425 actors </li></ul><ul><li>2 874 170 comments from 7 627 actors </li></ul><ul><li>795 949 messages exchanged by 22 500 actors </li></ul>
  27. 27. performances & limits time projections Knows 0.71 s 494 510 Favorite 0.64 s 339 428 Friend 0.31 s 136 311 Family 0.03 s 18 771 Message 1.98 s 795 949 Comment 9.67 s 2 874 170 Knows 20.59 s 989 020 Favorite 18.73 s 678 856 Friend 1.31 s 272 622 Family 0.42 s 37 542 Message 16.03 s 1 591 898 Comment 28.98 s 5 748 340 Shortest paths used to calculate Knows Path length <= 2: 14m 50.69s  Path length <= 2: 2h 56m 34.13s Path length <= 2: 7h 19m 15.18s  100 000 1 000 000 2 000 000 Favorite Path length <= 2: 5h 33m 18.43s 2 000 000 Friend Path length <= 2: 1m 12.18 s  Path length <= 2: 2m 7.98 s 1 000 000 2 000 000 Family Path length <= 2 : 27.23 s Path length <= 2 : 2m 9.73 s Path length <= 3 : 1m 10.71 s Path length <= 4 : 1m 9.06 s 1 000 000 3 681 626 1 000 000 1 000 000
  28. 28. some interpretations <ul><li>validated with managers of ipernity.com </li></ul><ul><li>friendOf , favorite , message , comment small diameter, high density </li></ul><ul><li>family as expected: large diameter, low density </li></ul><ul><li>favorite : highly centralized around Ipernity animator. </li></ul><ul><li>friendOf , family , message , comment : power law of degrees and betweenness centralities, different strategic actors </li></ul><ul><li>knows : analyze all relations using subsumption </li></ul>
  29. 29. some interpretations <ul><li>existence of a largest component in all sub networks </li></ul><ul><li>&quot;the effectiveness of the social network at doing its job&quot; [Newman 2003] </li></ul>
  30. 30. conclusion <ul><li>directed typed graph structure of RDF/S well suited to represent social knowledge & socially produced metadata spanning both internet and intranet networks. </li></ul><ul><li>definition of SNA operators in SPARQL (using extensions and OWL Lite entailment) enable to exploit the semantic structure of social data. </li></ul><ul><li>SemSNA organize and structure social data. </li></ul>
  31. 31. perspectives <ul><li>semantic based community detection algorithm </li></ul><ul><li>SemSNA Ontology </li></ul><ul><ul><li>extract complex SNA features reusing past results </li></ul></ul><ul><ul><li>support iterative or parallel approaches in the computations </li></ul></ul><ul><li>a semantic SNA to foster a semantic intranet of people </li></ul><ul><ul><li>structure overwhelming flows of corporate social data </li></ul></ul><ul><ul><li>foster and strengthen social interactions </li></ul></ul><ul><ul><li>efficient access to the social capital [Krebs, 2008] built through online collaboration </li></ul></ul>http://twitter.com/isicil
  32. 32. name Guillaume Erétéo holdsAccount organization mentorOf mentorOf holdsAccount manage contribute contribute answers twitter.com/ereteog slideshare.net/ereteog

×