Successfully reported this slideshow.
Your SlideShare is downloading. ×

張書奇教授分享專題_底泥整治技術應用現況與發展趨勢

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 48 Ad
Advertisement

More Related Content

Slideshows for you (20)

Similar to 張書奇教授分享專題_底泥整治技術應用現況與發展趨勢 (20)

Advertisement

More from epaslideshare (20)

Recently uploaded (20)

Advertisement

張書奇教授分享專題_底泥整治技術應用現況與發展趨勢

  1. 1. 張書奇 國立中興大學環境工程學系 副教授兼系主任 Shu-Chi Chang, Ph.D., P.E., P.A. Associate Professor and Chair Department of Environmental Engineering National Chung Hsing University 1 108年12月3日(星期二) 於成大會館(臺南市東區大學路2號) 3樓會議廳
  2. 2. 大綱 底泥組成與底泥污染 底泥污染整治技術 應用現況 發展趨勢
  3. 3. 底泥組成 (Mulligan et al., 2010) Primary minerals Sediment Dredged material Fulvic acid Humic acidCrystalline Inorganic Organic Fresh water CO2, H2S, CH4, etc. Pore waterSoil particle Gas Non-crystalline Allophane, etc. Sea water Dissolved compds Humins, lignins, etc. Peptides, lipids, carbohydrates 3
  4. 4. 底泥污染 4
  5. 5. 底泥污染物  Contaminants  Heavy metals  Organic pollutants  Grease and oils  PAHs  PCBs  PBDEs  BPA  Phthalates  Chlorobenzenes  Dioxin and furans  Herbicides and pesticides  etc.  Emerging contaminants NAPL= non-aqueous phase liquid 5
  6. 6. 污染物特性  Molecular weight  Density  Water solubility  Kow  Koc  KH  Vapor pressure  Viscosity  Biodegradability  others 6
  7. 7. 污染物比較 Congeners MW (g/mole) log Kow Vapor pressure (Pa, 25C) Water solubility (g/L) BaP 252.3 6.04 7.0×10-7 3.8 HCB 284.8 5.73 1.45×10-3 6 Aroclor 1254 328 6.5 1.03×10-2 12-57 PentaBDE 564.8 6.5-7.0 4.69×10-5 13.3 OctaBDE 801.5 8.4-8.9 6.59×10-6 <1 DecaBDE 959.2 10.0 4.63x10-6 <0.1 Compounds MW(g/mole) Log Kow Vapor pressure (Pa) Water solubility (g/L) 1,2-DCA 99 1.47 1.09E+04 8,500,000 CA 64.5 1.43 1.60E+04 5,700,000 TCE 131.4 2.53 9.84E+03 1,100,000 cis-DCE 96.9 1.86 2.70E+04 3,500,000 trans-DCE 96.9 1.93 4.43E+04 6,260,000 1,1-DCE 96.9 2.13 8.03E+04 3,344,000 VC 62.5 1.38 3.54E+05 2,763,000 7
  8. 8. 張書奇 國立中興大學環境工程學系 副教授兼系主任 Shu-Chi Chang, Ph.D., P.E., P.A. Associate Professor and Chair Department of Environmental Engineering National Chung Hsing University 8
  9. 9. 整治技術  Physical: separation, rinsing, floatation, ultrasonic  Chemical/thermal treatment: oxidation, electrokinetic, solidification, vitrification, thermal desorption  Biological: Slurry reactor, land farming, compositing, bioleaching, biotransformation, phytoremediation  Integrated technology: capping (active capping), ISPIE-BiRD, monitored natural recovery 9
  10. 10. 主要技術 (Adriaens et al., 2006) 10
  11. 11. 疏濬法 Dredging (Palermo et al, 2008) 11
  12. 12. 疏濬物處理 (Mulligan et al., 2010) 12
  13. 13. 限制之最終處置 Confined disposal (Netzband, 2002) 13
  14. 14. 限止之水域處置 Contained aquatic disposal (Thomas and Concord, 2005) 14
  15. 15. 固化法  水泥固化:加入水泥塑型  加藥固化:瀝青化、聚合化(PE射出成形)  加熱固化  玻璃化  電漿玻璃化  焦耳熱玻璃化  電磁感應玻璃化
  16. 16. 循環經濟之一例
  17. 17. 加蓋法 Capping (Aldrich, 2010) 17
  18. 18. 主動加蓋或混合加蓋 Active capping or mixing  Organic clay (Lintern et al., 2015)  Activated carbon (Beckingham and Ghosh, 2011)  Ash (Burgess et al., 2009)  Apatite (Peng et al., 2009)  Reactive mat (De Gisi et al., 2017)  Biochar (Wang et al., 2018) 18
  19. 19. 植生復育 Pytoremediation  Phytoextraction  Rhizofiltration  Phytodegradation  Hydraulic control  Phytovolatization  Rhizoremediation  Phytostabilization
  20. 20. 生物刺激 Biostimulation  encouraging the indigenous microbial population to degrade contaminants by influencing the factors which enhace microbial growth.  加入主要營養份:如C、N、P、S、K、Mg、Ca、 Na等  加入微量元素及生長因子  加入刺激因子(?)
  21. 21. 生物擴增 Bioaugmentation  加入已知具有降解能力之菌群  通常是加入外來菌群  其結果有時不是完全靠加入之菌 群繼續大量生存所導致之較佳降 解,而有可能是現地菌群與外來 菌群衍生出新基因型生物(new genotype)(Lendvay et al., 2003)  有時仍需加入適合此菌群生長之 營養成分
  22. 22. 生物群聚再造 Bioreengineering  未加入任何外來菌群,只是利用環境條件來調整菌相, 可導致現地菌群之群聚再造 (microbial community re- engineering)  如利用熱篩即為其中一種方式(Chang et al., 2019a; Chang et al., 2019b) 微生物 培養基質 三氯乙烯 濃度 Normalized MSTDR*, k Dehalococcoides mccartyi strains 11a DCB-1 medium 72-85 mg/L 11.5X** KB-1TM/VC mixed culture Modified yeast extract medium 11 mg/L 1X** NCHU mixed culture Yeast extract medium 1.0-16 mg/L 256X**
  23. 23. Monitored natural recovery (MNR) (Mulligan et al., 2010) 23
  24. 24. MNR (Mulligan et al., 2010) 24
  25. 25. Management Suspended solids (Mulligan et al., 2010) 25
  26. 26. 張書奇 國立中興大學環境工程學系 副教授兼系主任 Shu-Chi Chang, Ph.D., P.E., P.A. Associate Professor and Chair Department of Environmental Engineering National Chung Hsing University 26
  27. 27. in situ phase inversion emulsification and biological reductive dechlorination
  28. 28. 創新亮點 (1) Hot water-in-oil (W/O) emulsion injection to enhance HOCs desorption from sediment organic matter and partition in oil (2) Holding for a short period of time to encourage desorption and mass transfer of HOCs and simultaneous heat selection of microorganisms (3) Cool water injection to induce phase inversion to form an oil-in-water (O/W) emulsion with much smaller HOC- rich oil droplets in water, which could be easily displaced by incoming water (4) Accelerated biological reductive dechlorination using residual emulsion ingredients and HOCs as electron donors and acceptors
  29. 29. 相反轉乳化 Phase inversion emulsification Fernandez, P., André, V., Rieger, J., Kühnle, A., 2004. Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 251, 53-58.
  30. 30. 脫附Desorption tk slow tk rap t slowrap eFeF S S   0 kslow (h-1) for HCB and selected PCBs at 60 °C was about 40 to 92 times larger than those at 20 °C. Thus, at 80 °C, the kslow could be even larger and this is why the removal is much better than those tested at room temperature by using similar emulsion formulation. Cornelissen, G., van Noort, P.C.M., Parsons, J.R., Govers, H.A.J., 1997. Temperature Dependence of Slow Adsorption and Desorption Kinetics of Organic Compounds in Sediments. Environmental Science & Technology 31, 454-460.
  31. 31. 溶解  log Kow of HCB decreases from 5.46 to 5.17 as temperature increased from 25 °C to 45 °C with a slope of d(log Kow)/dT = -0.0144. Bahadur, N.P., Shiu, W.-Y., Boocock, D.G.B., Mackay, D., 1997. Temperature dependence of octanol−water partition coefficient for selected chlorobenzenes. Journal of Chemical & Engineering Data 42, 685-688.
  32. 32. 熱篩 Nissilä, M.E., Tähti, H.P., Rintala, J.A., Puhakka, J.A., 2011. Effects of heat treatment on hydrogen production potential and microbial community of thermophilic compost enrichment cultures. Bioresource Technology 102, 4501-4506.
  33. 33. 最適溫度區間  For most anaerobes capable of reductive dechlorination, the range is around 30-37°C
  34. 34. 實驗室中批次實驗
  35. 35. 管柱試驗- ISPIE 0 2 4 6 8 10 12 Upper Middle Lower Arclor1254,mg/kg Sediment core section Before After 0 2 4 6 8 10 12 Upper Middle LowerHCB,mg/kg Sediment core section Before After
  36. 36. 管柱試驗- BiRD
  37. 37. 脫氯進行式 0 20000 40000 60000 80000 100000 120000 140000 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 Peakarea Peak number day 0 day 14 day 49
  38. 38. 底泥整治模場試驗  二仁溪模場試驗  PAHs  PCBs  Dioxins  重金屬 4-13 38
  39. 39. 現場操作
  40. 40. 模場試驗組合 簡寫 添加否? ISPIE 加營養劑? 加微生物? WBK No No No No WNR No Yes No No WBS No Yes Yes No WBA No Yes Yes Yes FBK Yes No No No FNR Yes Yes No No FBS Yes Yes Yes No FBA Yes Yes Yes Yes 40
  41. 41. 總移除率 41新增頁尾 0% 20% 40% 60% 80% 100% 120% WBK WNR WBS WBA Overallremoval Test conditions Upper Lower Mean Aroclor 1254 HCB
  42. 42. Benchmarking Pollutants Time (weeks) Experimental setup Removal References 2,3,4,5,6- pentachlorobiphenyl 12 Lab batch study / Fresh ~85%* Natarajan et al., 1998 Aroclor 1254 8 Lab batch study / Fresh < 63%** Quensen et al., 1990 2,3,5,6-CB; 2,3,4,5- CB;2,3,4,5,6-CB 10 Lab batch study / Fresh 100% for 2,3,4,5-CB* 100% for 2,3,4,5,6- CB* 60-80% for 2,3,5,6- CB* Chang et al., 2001 Aroclor 1254 50 Lab batch study / Fresh 58~63% for meta- and para-Cl* no apparent removal of ortho-Cl* Pakdeesusuk et al., 2003 Aroclor 1254 17 Lab batch study / Fresh 25%** Kaya et al, 2018 HCB 20 Lab batch study / Fresh 47.6% - 59.4%* Hirano et al., 2007 HCB 5 Lab batch study / Fresh 100%* Zhou et al. 2015 Weathered Aroclor 1254 and HCB 10 Field microcosm /Weathered 98%* This study Notes * means the removal is based on the disappearance of target compounds. ** means the removal is based on chlorine removal. 42
  43. 43. NGS 優勢菌 432019年11月30日 新增頁尾
  44. 44. Phylogenetic classification of NGS data No. NRL NRU BKL BKU slope R2 kingdom phylum class order 1 3.5% 4.7% 1.1% 2.6% 1641 0.7515 Archaea Euryarchaeota Methanomicrobia Methanosarcinal es 2 1.7% 1.3% 1.7% 1.6% -6840 0.2238 Bacteria Chloroflexi ― ― 3 1.4% 0.9% 1.5% 1.5% -5779 0.4378 Bacteria Proteobacteria Epsilonproteobacter ia Campylobacteral es 4 1.2% 0.9% 1.3% 1.7% -6711 0.5395 Bacteria Proteobacteria Deltaproteobacteria Desulfobacterales 5 0.7% 1.9% 1.2% 0.9% 1406 0.0763 Bacteria Firmicutes Clostridia Clostridiales 6 0.9% 0.9% 1.1% 1.3% -12709 0.8448 Bacteria Chloroflexi Anaerolineae Anaerolineales 7 0.9% 0.8% 0.9% 1.5% -6058 0.4391 Bacteria Chloroflexi Dehalococcoidia MSBL5 8 0.5% 1.8% 0.6% 0.5% 2228 0.2636 Bacteria Firmicutes Clostridia Clostridiales 9 0.8% 0.7% 0.8% 1.0% -15890 0.5666 Bacteria Actinobacteria Acidimicrobiia Acidimicrobiales 10 1.3% 0.8% 0.4% 0.7% 5750 0.6114 Archaea Euryarchaeota Methanomicrobia Methanosarcinal es 11 1.2% 0.7% 0.6% 0.7% 7077 0.4712 Archaea Bathyarchaeota ― ― 12 2.4% 0.2% 0.1% 0.1% 1571 0.4002 Bacteria Proteobacteria Gammaproteobacte ria Oceanospirillales 442019年11月30日 新增頁尾
  45. 45. 模場試驗結論  在現地模場試驗,單一次的ISPIE操作可去除約60%風 化之多氯聯苯及六氯苯  對風化之六氯苯及多氯聯苯,在70天內,總去除率可 達98%。  與以往研究不同,耐熱之古細菌Methanosaeta spp., 可能是此菌群中最重要之多氯聯苯與六氯苯降解菌。  此結果顯示,微生物群聚再造 (Bioreengineering or microbial community reengineering)可能是一極佳 之生物整治技術。 45
  46. 46. 發展趨勢  技術走勢  現地技術In situ technology  無擾動或是低度擾動No or low disturbance  快速降解或無毒化(to finish the project within a 6-month dry season)  無衍生之負面效應No derived negative impact  低成本或是高效率Low cost or more effective  整治技術之綠色永續整治評價  固化法應依循環經濟思維再優化  資源化之新資材建議以低毛利率之大宗貨物較為 可行 46
  47. 47. 結論  底泥具有豐富之生態且是人類食物網絡重要一環,需 要審慎保護。  底泥中有機污染物多為POPs,因輸水特性而不易隨水 流移動且欠缺生物可及性,不易生物降解,而具有持 久污染特性。  底泥中重金屬容易與硫化物形成錯化物而長期蓄積, 不易釋放至水中。  屬於生物重整 (Bio-reengineering)之ISPIE-BiRD 可能可以有效整治有機物污染之底泥場址。  未來之底泥技術研發均應將GSR納入考量。 47
  48. 48. 誌謝  行政院環境保護署土壤及地下水污染整治基金管理會 之「土壤及地下水污染整治基金補助研究與模場試驗 專案」之研究經費補助。  水利署第六河川局核發河川地使用許可。  模場所在地主管機關台南市政府核准二仁溪模場試驗 計畫。  科技部計畫NSC 98-2622-E-005-024-CC2之經費補 助 48

×