Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

최근의 공간정보 동향과 시사점 - 한국역학회 특강

161 views

Published on

2018년 4월 6일 서울대학교 병원에서 개최된 한국역학회 봄 학술대외에서 특강한 자료입니다. 공간정보의 동향과 시사점을 중심으로 보건분야와의 융복합 가능성을 살펴봤습니다.

Published in: Technology
  • Be the first to comment

  • Be the first to like this

최근의 공간정보 동향과 시사점 - 한국역학회 특강

  1. 1. 최근의 공간정보 분야 동향과 시사점 2018년 4월 6일 가이아쓰리디㈜ 대표이사 신상희(shshin@gaia3d.com) 2018년 봄 학술대회
  2. 2. Trends?
  3. 3. Convergence of ICT and Spatial IT <Source: Sakong, Hosang(2016), Policy Directions of Spatial Information for Hyper-connected Society>
  4. 4. Location Technology Evolution <Source: Steve Liang(2016)>
  5. 5. Location Technology Evolution Source: 이기준, 2012, “공간정보관련 현안 이슈와 대응전략” 발표 자료를 재구성 Size of Space Number of Users 인구수 도시계획 국토건설네이게이션 인터넷 지도 스마트폰 LBS Person -> Things (IoT) 1980 1990 2000 2010 ~ 2020
  6. 6. Location Technology Evolution <Source: Steve Liang(2016)>
  7. 7. Location Technology Evolution <Source: Steve Liang(2016)>
  8. 8. Location Technology Evolution <Source: Steve Liang(2016)> Location is the first class citizen for IoT!
  9. 9. Location Technology Evolution Size of Space Update Cycle Small 1980 1990 2000 2010 ~ 2020 Large Static Dynamic <Source: Sakong, Hosang(2016), Policy Directions of Spatial Information for Hyper-connected Society>
  10. 10. Location Technology Evolution <Source: Thomas W. Oestreich(2015), “Location, the Next Champion in Analytics”, Gartner Group>
  11. 11. IoT, Big Data and A.I. 감각 기관 기억 지능 IoT(Internet of Things) Big Data A. I. Smartizen(10Bn) Smart Devices(100Bn) Smart Sensor(100Tn) <Source: 이상훈(2016), ‘ICT 기술 파도와 4차 산업혁명’을 수정, 재편집>
  12. 12. <Image Source: http://www.inhapress.com/news/photo/201706/7226_2328_957.png>
  13. 13. GeoSpatial Paradigm Shift Current Future Concept Object Information Context Awareness Data Consumer Prosumer/DIY User Person Things Visualization Real World Digital Twins Application Base Map Key Factor for Fusion Driving Entity Public Sector Private Sector Space Outdoor Indoor + Outdoor + Update Cycle Static Dynamic <Source: Hosang Sagong(2016), ‘Policy Directions of Spatial Information for Hyper-connected Society’ modified>
  14. 14. Any Problems? Bottleneck!! BIM/AEC Point Cloud Drone IoT Lidar Self-Driving Car Crowd Sourced
  15. 15. Implications?
  16. 16. Key Words Live(Real-Time) Geospatial Indoor + Outdoor + Underground Mapping Analytics & Simulation Digital Twin
  17. 17. Digital Twins Digital Twins A digital twin is a virtual representation of a physical object or system across its lifecycle, using real-time data to enable understanding, learning and reasoning.
  18. 18. Digital Twins
  19. 19. Digital Twins
  20. 20. Integration of Indoor and Outdoor Space GIS CityGML GeospatialInformation GISStandards IFC BIM OutdoorModel IndoorModel BIMStandards Construction DrawingsInfo. In/Outdoor GIModel (GeospatialInformation Model)
  21. 21. Integration of Indoor and Outdoor Space
  22. 22. Facility Management GeoBIM Platform Integration Model
  23. 23. Underground Mapping
  24. 24. Live Data GIS
  25. 25. Live Data GIS “CFD(Computational Fluid Dynamics): Modeling and predicting air quality, pollution modeling”
  26. 26. Analytics & Simulation
  27. 27. Analytics & Simulation
  28. 28. Analytics & Simulation
  29. 29. Real Cases
  30. 30. Supporting Elderly People <Source: www.nively.com >
  31. 31. Supporting Elderly People nursing home General pratictioners Medical helpdesk or other service provider Private home MentorAge® cloud Private home MentorAge® MentorAge® MentorAge® <Source: www.nively.com >
  32. 32. (2015.8. ~ 2017.8.) • 구제역 발생 현황 및 축산시설 방문 차량을 이용한 역학 조사 분석 활용 • 망고시스템 수행 <Source: www.mangosystem.com>
  33. 33. (2015.8. ~ 2017.8.) • 차량 방문 정보(약 1억건), 축산농가 및 시설(약 40만건) • 구제역 발생현황 2014년(183건) 테이블로 구성 차량방문정보 차량번호 방문일자 농가번호 방문목적 … … 축산농가정보 위치(Point) 농가번호 사육두수 …. FMD 발생현황 위치(Point) 농가번호 발생일 … 월별 차량 방문정보 view 시도, 시군구, 읍면동 행정경계 <Source: www.mangosystem.com>
  34. 34. (2015.8. ~ 2017.8.) • 오픈소스GIS로 구현 <Source: www.mangosystem.com> User Application Server Apache Tomcat HTTP GET/POST Request Response HTTP GET/POST Request JSON, XML UI Client Web Browser • Internet Explorer 8+ • Chrome 27+ • Firefox 19+ Web Service Client • REST or SOAP User Interface UI MAP Service Framework SpringMVC Database Access MyBatis Database Server PostgreSQL / PostGIS GIS Server OBJECT, XML Service Type WMS - Map, Legend WFS - Vector, Spatial Query WPS - Analysis Processing DataStore JDBC HTTP GET/POST Request Image XML GML GeoJSON KML Object-Relational Mapping (ORM) JDBC : 적용기술 : 세부 적용기술 : 서비스 영역 : 데이터 및 처리방향 OBJECT BASEMAP – V-World
  35. 35. (2015.8. ~ 2017.8.) • FMD 발생자료를 이용한 Pin Map: 발생현황 • HeatMap/Kernel Density: WMS Rendering Transformation <Source: www.mangosystem.com>
  36. 36. (2015.8. ~ 2017.8.) • FMD 발생자료를 이용한 시도/시군구/읍면동별 단계구분도 • 실시간 Point in Polygon Overlay 분석 후 지도화 <Source: www.mangosystem.com>
  37. 37. (2015.8. ~ 2017.8.) • FMD 발생자료를 이용한 Spatial Clump Map (5km) • k-Nearest Neighbor Map(1 ~ n차) <Source: www.mangosystem.com>
  38. 38. (2015.8. ~ 2017.8.) • FMD 발생자료를 이용한 Wind Rose Map: 확산 Pattern 분석 • FMD 발생자료를 이용한 시계열 애니메이션 <Source: www.mangosystem.com>
  39. 39. (2015.8. ~ 2017.8.) • FMD 발생자료와 차량방문정보를 이용한 사회연결망그래프 • 특정발생농가에서 최근 21일 내에 방문한 모든 차량과 차량이 방문한 모든 농가 확인 <Source: www.mangosystem.com>
  40. 40. (2015.8. ~ 2017.8.) • 주, 월 단위 구제역 확산 특성 분석 <Source: www.mangosystem.com>
  41. 41. Ebola Predictive Model <Source: UN Open GIS Initiative> • UN Open GIS Initiative Spiral 3  Vector Process  Select, Merge, Clip …  Count Point in Polygon  Raster Process  Line Density  Mask  Vector To Raster  Zonal Statistics  Spatial Statistics  Ordinary Least Squares (OLS)  Report  Map
  42. 42. Ebola Predictive Model <Source: UN Open GIS Initiative> Cleaned Ebola Dataset loaded via uDig • Data Cleaning and Loading
  43. 43. Ebola Predictive Model <Source: UN Open GIS Initiative> • Line Density Analysis
  44. 44. Ebola Predictive Model <Source: UN Open GIS Initiative> • Zonal Statistics
  45. 45. Ebola Predictive Model <Source: UN Open GIS Initiative> • Ordinary Least Squares
  46. 46. Ebola Predictive Model <Source: UN Open GIS Initiative> • Ordinary Least Squares on WPS
  47. 47. Ebola Predictive Model <Source: UN Open GIS Initiative> • Heat Map Display on WPS
  48. 48. Ebola Predictive Model <Source: UN Open GIS Initiative> • Standard Deviational Eclipse on WPS
  49. 49. Thank you!

×