Strategic Buildings’ Energy Systems Planning

309 views

Published on

Presentation at the Young OR Conference, The Operational Research Society, April 9-11 2013, Exeter

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
309
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Strategic Buildings’ Energy Systems Planning

  1. 1. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryStrategic Buildings’Energy Systems PlanningEmilio L. Cano1Markus Groissb¨ock2Michael Stadler2Javier M. Moguerza11DEIO, Universidad Rey Juan Carlos, Madrid2CET, Center for Energy and innovative Technologies, AustriaYoung OR Conference, Exeter, UKApril 9-11, 2013Young OR 18 Biennial Conference, Exeter 2013 1/29
  2. 2. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryOutline1 IntroductionEnergy Systems in BuildingsThe EnRiMa Project2 Strategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjective3 Numerical ExampleInput DataSolutionYoung OR 18 Biennial Conference, Exeter 2013 2/29
  3. 3. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryOutline1 IntroductionEnergy Systems in BuildingsThe EnRiMa Project2 Strategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjective3 Numerical ExampleInput DataSolutionYoung OR 18 Biennial Conference, Exeter 2013 3/29
  4. 4. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnergy Systems in BuildingsLiberalisation of energy markets.Global targets, e.g. 20/20/20.Regulations:Emissions.Efficiency.Technologies: Generation, ICT.Young OR 18 Biennial Conference, Exeter 2013 4/29
  5. 5. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnergy Systems in BuildingsLiberalisation of energy markets.Global targets, e.g. 20/20/20.Regulations:Emissions.Efficiency.Technologies: Generation, ICT.Decisions at the building levelStrategic: Energy Systems DeploymentOperational: Energy Systems UseYoung OR 18 Biennial Conference, Exeter 2013 4/29
  6. 6. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnRiMa Objectivehttp://www.enrima-project.euYoung OR 18 Biennial Conference, Exeter 2013 5/29
  7. 7. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnRiMa ObjectiveObjectiveThe overall objective of EnRiMa is to developa decision-support system (DSS) for operatorsof energy-efficient buildings and spaces ofpublic use.http://www.enrima-project.euYoung OR 18 Biennial Conference, Exeter 2013 5/29
  8. 8. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnRiMa ConsortiumYoung OR 18 Biennial Conference, Exeter 2013 6/29
  9. 9. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnRiMa DSS OutlineYoung OR 18 Biennial Conference, Exeter 2013 7/29
  10. 10. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummarySymbolic Model SpecificationThe SMS contains the mathematicalrepresentation of all relevant energysubsystems and their interactions. Iscomposed of sets, variables, parametersand equations.In the project deliverables D4.2 (initial)and D4.3 (updated).Young OR 18 Biennial Conference, Exeter 2013 8/29
  11. 11. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryDecision ScopeEnRiMaDSSStrategicModuleOperationalModuleStrategicDVsStrategicConstraintsUpper-LevelOperational DVsUpper-LevelEnergy-BalanceConstraintsLower-LevelEnergy-BalanceConstraintsLower-LevelOperational DVsYoung OR 18 Biennial Conference, Exeter 2013 9/29
  12. 12. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryOutline1 IntroductionEnergy Systems in BuildingsThe EnRiMa Project2 Strategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjective3 Numerical ExampleInput DataSolutionYoung OR 18 Biennial Conference, Exeter 2013 10/29
  13. 13. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryModel SetsTimem Mid-term period; m ∈ M.p Long-term period; p ∈ P.t Short-term period; t ∈ T .Other featuresi Energy-generation technology; i ∈ I.j Energy-absorbing technology; j ∈ J .k Energy type; k ∈ K.n Energy market; n ∈ N.l Pollutant; l ∈ L.Young OR 18 Biennial Conference, Exeter 2013 11/29
  14. 14. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryStrategic ModelEnRiMaDSSStrategicModuleOperationalModuleStrategicDVsStrategicConstraintsUpper-LevelOperational DVsUpper-LevelEnergy-BalanceConstraintsLower-LevelEnergy-BalanceConstraintsLower-LevelOperational DVsThe strategic model is used in order to makestrategic decisions concerning whichtechnologies to install and/or decommission inthe long term. It includes a simplified versionof operational energy-balance constraints.Young OR 18 Biennial Conference, Exeter 2013 12/29
  15. 15. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryStrategic DecisionsEnergy-creating technologies (i)spi Available capacity (kW )sdp,qi Number of devices to be decommissionedsipi Number of devices to be installedEnergy-absorbing technologies (j)xpj Available capacity (kWh)xdp,qj Capacity to be decommissionedxipj Capacity to be installedYoung OR 18 Biennial Conference, Exeter 2013 13/29
  16. 16. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEmbedded Operational ModelEnRiMaDSSStrategicModuleOperationalModuleStrategicDVsStrategicConstraintsUpper-LevelOperational DVsUpper-LevelEnergy-BalanceConstraintsLower-LevelEnergy-BalanceConstraintsLower-LevelOperational DVsThe model includes the realisation ofshort-term decisions (t) that are scaled to along-term period (p) through a representativeprofile (m).Young OR 18 Biennial Conference, Exeter 2013 14/29
  17. 17. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEmbedded Operational Decisionsup,m,t,mk,n Purchase of energy (kWh)wp,m,t,mk,n Sale of energy (kWh)yp,m,ti,k Input of energy k to technology i (kWh)qip,m,tk,j Energy type k added to storagetechnology j (kWh)qop,m,tk,j Energy type k released from storagetechnology j (kWh)zp,m,ti,k Output of energy type k from technologyi (kWh)rp,m,tk,j Energy type k to be stored in technology j(kWh)ep,m,tEnergy consumption (kWh)Young OR 18 Biennial Conference, Exeter 2013 15/29
  18. 18. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnergy-dispatching Decision FlowMarketDemandPurchasesFictitiousGenerationTechnologiesStorageTechnologiesNKJISalesK yuuuwuwzqiqoqiYoung OR 18 Biennial Conference, Exeter 2013 16/29
  19. 19. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryStrategic Constraintsspi = Gi0≤a ≤pAGp−ai siai −a <a ≤psda ,aixpj = GSj0≤a ≤pASp−aj xiaj −a <a ≤pxda ,ajspi ≤ GLpixpj ≤ SLpjq>psdp,qi ≤ sipiq>pxdp,qj ≤ xipjYoung OR 18 Biennial Conference, Exeter 2013 17/29
  20. 20. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryBudget Limiti∈I 0≤a ≤pCI p,p−ai · Gi · sipi −a <a ≤psda ,ai+0≤a <pCDp,p−ai · sda ,pi+j∈J 0≤a ≤pCISp,p−aj · GSj · xipj −a <a ≤pxda ,aj+0≤a <pCDSp,p−aj · xda ,pj ≤ ILYoung OR 18 Biennial Conference, Exeter 2013 18/29
  21. 21. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEmissions and Efficiencym∈MDM p,m·i∈I,t∈T k∈KILH i,k,l · yp,m,ti,k+k∈K n∈NBP ,m ∈MBLCk,l,n · up,m,t,mk,n ≤ PLplep,m,t=k∈K,m ∈MBn∈NBPBk,n · up,m,t,mk,n ++n∈NGNFup,m,t,mk,nk∈K,p∈P,m∈M,t∈TDp,m,tk +n∈NS ,m ∈MSwp,m,t,mk,n≥ EF ·p∈P,m∈M,t∈Tep,m,tYoung OR 18 Biennial Conference, Exeter 2013 19/29
  22. 22. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryEnergy Balancei∈Izp,m,ti,k +n∈NB (k),m ∈MBup,m,t,mk,n −i∈Iyp,m,ti,k−n∈NS (k),m ∈MSwp,m,t,mk,n −j∈JStorip,m,tj,k= Dp,m,tk −j∈JStorop,m,tj,kzp,m,ti,k=k∈KI (i)ECi,k,k · yp,m,ti,kzp,m,ti,k ≤ DT · AFp,m,ti · spirp,m,tj,k = OSj,k · rp,m,t−1j,k + OI j,k · rip,m,t−1j,k−OOj,k · rop,m,t−1j,krop,m,tj,k ≤ OX j,k · rp,m,tj,kYoung OR 18 Biennial Conference, Exeter 2013 20/29
  23. 23. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryObjective Functionp∈Pi∈I0≤a ≤pCIp,p−ai · Gi ·sipi −a <a ≤psda ,ai+0≤a <pCDp,p−ai · sda ,pi+j∈J0≤a ≤pCISp,p−aj · GSj ·xipj −a <a ≤pxda ,aj+0≤a <pCDSp,p−aj · xda ,pj+m∈MDMp,m·i∈I,k∈K,t∈TCOp,m,ti,k· zp,m,ti,k+m∈MDMp,m·j∈J ,k∈K,t∈TCOSp,m,tj,k· rp,m,tj,k+m∈MDMp,m·k∈K,t∈T n∈NB ,m ∈MBPPp,m,t,mk,n· up,m,t,mk,n−m∈MDMp,m·k∈K,t∈T n∈NS ,m ∈MSSPp,m,t,mk,n· wp,m,t,mk,n−i∈ISUpi · Gi · sipiYoung OR 18 Biennial Conference, Exeter 2013 21/29
  24. 24. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryOutline1 IntroductionEnergy Systems in BuildingsThe EnRiMa Project2 Strategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjective3 Numerical ExampleInput DataSolutionYoung OR 18 Biennial Conference, Exeter 2013 22/29
  25. 25. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryTime and TechnologiesTimeP ={1, . . . , 25}M ={winter, spring, summer, fall}T = {0-4, 4-8, 8-12, 12-16, 16-20, 20-24}TechnologiesI = {CHP, PV, WG}Gi ={5.5, 4.5, 1.4} kWCI 1,0i ={3710, 1327, 5467} EUR/kWYoung OR 18 Biennial Conference, Exeter 2013 23/29
  26. 26. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryPrices and Demand0.10.20.30.40.50.10.20.30.40.5PPSP1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25Time Periods (years)Price(EUR/kWh)Energy TypeelectricityNGEnergy Prices Simulation05001000150020002500050010001500200025000500100015002000250005001000150020002500winterspringsummerfall0−4 4−8 8−12 12−16 16−20 20−24Time periodEnergyDemand(kWh)Energy TypeelectricityheatEnergy Demand Simulation for year 1Young OR 18 Biennial Conference, Exeter 2013 24/29
  27. 27. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryStrategic DecisionsCHP0123401234DecommissioningInstallation1 25Installation YearvalueDecom.Period25Strategic Decisions05101520CHP1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25YearsvalueTechnologies capacity (kW)Young OR 18 Biennial Conference, Exeter 2013 25/29
  28. 28. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryOperational Decisions01000020000300001 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25YearsvalueEnergy TypeelectricityheatNGEnergy purchaseselectricity heat01000200030004000CHP1 2 3 4 5 6 7 8 910111213141516171819202122232425 1 2 3 4 5 6 7 8 910111213141516171819202122232425Total per yearvalueEnergy OutputYoung OR 18 Biennial Conference, Exeter 2013 26/29
  29. 29. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummarySummaryNew challenges for building managers.DSS are needed.EnRiMa strategic model.Young OR 18 Biennial Conference, Exeter 2013 27/29
  30. 30. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummarySummaryNew challenges for building managers.DSS are needed.EnRiMa strategic model.OutlookStochastic Programming version.DSS modules integrationSolvers, alogorithms and benchmarking.Young OR 18 Biennial Conference, Exeter 2013 27/29
  31. 31. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryAcknowledgementsThis work has been partially funded by theproject Energy Efficiency and RiskManagement in Public Buildings (EnRiMa)EC’s FP7 project (number 260041)We also acknowledge the projects:Project RIESGOS-CM: code S2009/ESP-1685HAUS: IPT-2011-1049-430000EDUCALAB: IPT-2011-1071-430000DEMOCRACY4ALL: IPT-2011-0869-430000CORPORATE COMMUNITY: IPT-2011-0871-430000CONTENT & INTELIGENCE: IPT-2012-0912-430000The Center for Energy and innovative Technologies (CET) has beensupported by the ”Austrian Federal Ministry for Transport, Innovation andTechnology” through the ”Building of Tomorrow” program as well as by theTheodor Kery Foundation of the province of Burgenland in courseof EnRiMa.Young OR 18 Biennial Conference, Exeter 2013 28/29
  32. 32. Energy SystemsPlanningYoungOR 18Emilio L. CanoIntroductionEnergy Systems in BuildingsEnRiMa ProjectStrategic ModelStrategic DecisionsOperational DecisionsStrategic ConstraintsOperational ConstratinsObjectiveNumerical ExampleInput DataSolutionSummaryDiscussionThanks !emilio.lopez@urjc.es@emilopezcanoYoung OR 18 Biennial Conference, Exeter 2013 29/29

×