Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Webinar: Desmistificando projetos de fontes chaveadas

815 views

Published on

Possibilitar engenheiros com pouca familiaridade com eletronica de potencia a desenvolver fontes chaveadas. São apresentadas também soluções para o projeto de fontes chaveadas da ST.
Video do Webinar: https://www.embarcados.com.br/webinars/webinar-desmistificando-projetos-de-fontes-chaveadas/

Published in: Technology
  • Be the first to comment

Webinar: Desmistificando projetos de fontes chaveadas

  1. 1. Demystifying SMPS Design Powered by ST Rogerio BUENO March-18th , 2020
  2. 2. Demystifying SMPS Design Powered by ST Rogerio BUENO March-18th , 2020
  3. 3. Agenda • Market • Topologies • How to implement • Simulation • Design tips • QA 3
  4. 4. Periodical appliances Behavioral appliances Target market Home Appliances Smart Home Smart Industry 4
  5. 5. Trend Gate driver Reference voltage + - Vout + - Ramp VinController IC Power stage Compensation • Main key parameters • Simple, one operational amplifier and one comparator needed • Compensation loop is tuned by changing external capacitor/resistors • Gate driver usually implemented in Controller IC • Number of implemented features are limited, ASIC only for high volumes • All actual values of system are measurable by oscilloscope Gate driver Vout Timer Vin MCU Power stage Driving ADC Digital control loop • Main key parameters • Require MCU timer with high resolution • Compensation loop is tuned by constant – this value can be variable with load/voltage change • „Controller output - Action command value“ is measurable at DAC pin by oscilloscope • Analog • Digital 5
  6. 6. Auxiliary Power Supply How does it look like Isolated Auxiliary Supply Voltage Suppressors, (Zenner, TVS) Output Diode Voltage Controller Rectifying diodes Offline Converter or Controller CV Controller Opto HV MOSFET Off-line Controller AC Voltage DC Voltage 6
  7. 7. Topologies Buck Converter
  8. 8. Buck Operation SW L1 LoadD1 Cout Rectifier AC input Cin L1 Load D1 Reverse Cout charging ON + + - - Vd Vl Vo L1 Load D1 Forward Cout discharging OFF + + - - Vd Vl Vo 8
  9. 9. L1 C1 D1 C2 Q1 L1 C1 D1 C2 Q1 L1 C1 D1 C2 Q1 Buck – operational principle InputDC Output DC + + - - + - IQ1 ONphaseOscillation phase OFFphase InputDC Output DC + + - - +- IQ1 InputDC Output DC + + - - + - IQ1 IQ1 VD1 IL1 ON OFF ON OFF IQ1 VD1 IL1 ON OFF ON OFF IQ1 VD1 IL1 ON OFF ON OFF   L VVt I outinON L   1 L Vt I outOFF L  1 9
  10. 10. L1 C1 D1 C2 Q1 D2 C3 Buck topology for HV – Other issues to consider • HS switch => issue with feedback connection • The regulation does not sense voltage directly from output, but from reflection on C3 => load regulation. • Low duty cycle • Due to minimum Turn ON time the generation of low output voltage can bring instability or power limitation • Recovery effect of diode • The D1 has to be fast diode as possible to minimize losses due to recovery effect • Operation at no load • For no load the output voltage can rise up => some minimum load is requested FB CTRL. STTA806 STTH8R06 STTH806 TTI SiC VR= 400V ; IF= 8A ; Tj= 125°C di/dt= 200A/µs 0 2A/Div , 20ns/Div 10
  11. 11. Inductor  Iout is not de max current flowing through the inductor in a buck converter. Take into account Imax. Imin 0 D.T T t Imax Iav IL 0 tOnOn Off ToffTon  Check the ratio Iop/IR x Temperature Ambient.  For better efficiency and thermal behavior check Pc = Rdc * Irms2.  In addition, considering Imax and max operating temperature it is suggestable to keep some margin to avoid saturation. 11
  12. 12. Flyback Theory of Operation
  13. 13. Flyback – operational principle C1 D1 C2 Q1 1 4 2 3 T1 InputDC Output DC + + - - + +- - IQ1 IQ1 VQ1 ID1 ON OFF ON OFF ONphase C1 D1 C2 Q1 1 4 2 3 T1 InputDC Output DC + + - - IQ1 VQ1 ID1 ON OFF ON OFF Oscillation phase C1 D1 C2 Q1 1 4 2 3 T1 InputDC Output DC + + - - + +- - ID1 IQ1 VQ1 ID1 ON OFF ON OFF OFFphase 13
  14. 14. Flyback modes of operation IQ1 VQ1 ID1 ON OFF ON OFF • Benefits • ZCS turn ON of MOSFET • ZCS turn OFF diode • Drawbacks • EMI self-oscillating • Unused time slot • When to use • Higher input voltage (typ. 230V) Discontinuous Mode DCM IQ1 VQ1 ID1 ON OFF ON OFF Quasi Resonant Mode • Benefits • ZCS turn ON of MOSFET • ZCS turn OFF diode • Drawbacks • Variable frequency could be problematic • When to use • When efficiency is main parameter IQ1 VQ1 ID1 ON OFF ON OFF Continuous Mode CCM • Benefits • Higher power capability • Drawbacks • Not ZCS – worse EMI and switching power loses • When to use • Need for peak power demands • When lower input voltages (110V) 14
  15. 15. Flyback Topology – Leakage Inductance • Leakage Inductance • Leakage inductance is a parasitic inductance that is in series with primary inductance, Hence leakage inductance absorbs part of energy sent to Xmer • Typically Leakage inductance is 1-3% of primary inductance, it is mostly a function of physical structure of transformer • PLeakage = ½ * LLeakage* Ip ^2 * F 15
  16. 16. Flyback Topology – Leakage Inductance 16
  17. 17. Flyback Design – Peak Clamp Circuit Benefits • Best standby • Best Efficiency • Precise voltage limitation Drawbacks • Additional load burning power even at light/no load. • Peak level depends on the load level. 17
  18. 18. How to implement a SMPS ? From few watts up to 75W
  19. 19. Product positioning for AC-DC SMPS 25W L656x L6599A, L6699 0W 75W 100W (Embedded MOS) VIPerPlus family Flyback Converter Flyback Controller + ext. MOS PFC + Flyback PFC + LLC Power L6566xx, HVLED001A, STCH03 L656x, HVLED001A STCH03 L6566xx 19
  20. 20. >800V Power MOSFET Mixed signal Controller VIPer PLUS offline converters Robust and tight technology Primary MOSFET 800V HV current source 800V Thermal diode senseFET 20
  21. 21. Supported Topologies VIPer*6, VIPer*1, VIPer0PBuck & Buck-boost Flyback with secondary side regulation (SSR) Flyback with primary side regulation (PSR) All VIPer families Altair0*, HVLED8** 22
  22. 22. 800V/1050V switchers to Best Fit your application 4 W 6 W 7 W 12 W 15 WFly-back Converter 85-265VAc 200 mA 350 mABuck Converter 150 mA Buck& Fly-back Fly-back Fixed Frequency, Jittering, Brown-out, 30mW STB Fixed Frequency, Jittering, Brown-out, 30mW STB Quasi Resonant Brown-out, 30 mW STB Fixed Frequency, Jittering 30mW STB, E/A inside 5V VCC, Input OVP/UVP, 10mW STB Fixed Frequency, Jittering, E/A inside Zero Power Mode, 5V VCC Fixed Frequency, Jittering, E/A inside Minimal BoM, 730 BVDSS Fixed Frequency, Jittering, E/A inside VIPer0P VIPer01 VIPer11 VIPer25 VIPer35 VIPer06 VIPer16 VIPer17 VIPer27 VIPer37 VIPer28 VIPer38 VIPer122 VIPer26/VIPer26K 1050 V 500 mA VIPer31* * under development, samples available VIPerPlus Product Portfolio VIPer222 23
  23. 23. VIPer*1 Ecosystem 5V-6W@85-265VAC • VIN = 85 ~ 265 VAC • VOUT1= 12V (iso) • IOUT1 = 0.65 A 5V- 200mA • VIN = 85 ~ 265 VAC • VOUT1= 5V (non iso) • IOUT1 = 0.200 A • T AM = 60°C STEVAL-ISA178V1 AN4858 VIPER013XS (30kHz) Buck converters Fly-back converters 12V 7.8W@85-265VAC 5V-6W@85-265VAC 5V- 350mA • VIN = 85 ~ 265 VAC • VOUT1= 5V (non iso) • IOUT1 = 0.35 A STEVAL-ISA195V1 AN5081 VIPER115XS (30kHz) STEVAL-ISA197V1 AN5057 VIPER114LS (60kHz) STEVAL-ISA196V1 AN5072 VIPER114LS (60kHz) • VIN = 85 ~ 265 VAC • VOUT1= 5V (non iso) • IOUT1 = 0.85 A STEVAL-ISA177V1 AN4855 VIPER013LS (60kHz) • VIN = 85 ~ 265 VAC • VOUT1= 5V (non iso) • IOUT1 = 1.2 A Under developent • VIPer11 eDesign integration • Fly-back PSR/SSR 15V 1.2A based on VIPER318LD • Buck 5V-500mA (40-265VAC) based on VIPER319XD ISOLATED NON ISOLATED NON ISOLATED VIPer AC-DC converters Brochures Transformer design SPICE Models 5V- 100mA • VIN = 60 ~ 300 VAC • VOUT1= 5V (non iso) • IOUT1 = 0.100 A • T AM = 60°C STEVAL-VP013B1B AN4858 VIPER013BLS (60kHz) 24
  24. 24. VIPer122 – Application advantages STEVAL-V12201B (Buck 15V-200mA) EMI Average @ 230VAC @ ful load Small filter STAND-BY 30 mW EFFICIENCY 80% 25
  25. 25. Product positioning for AC-DC SMPS 25W L656x L6599A, L6699 0W 75W 100W (Embedded MOS) VIPerPlus family Flyback Converter Flyback Controller + ext. MOS PFC + Flyback PFC + LLC Power L6566xx, HVLED001A, STCH03 L656x, HVLED001A STCH03 L6566xx 26
  26. 26. STCH03 Quasi Resonant Flyback Controller
  27. 27. STCH03 Quasi Resonant Flyback Controller Offline PWM controller for low standby adapters • Constant current mode (CC) from primary side and voltage control from secondary side • 650V embedded HV start-up circuit • Quasi-resonant (QR) Zero Voltage Switching (ZVS) operation • Valley skipping at medium-light load and advanced burst mode operation at no-load • Accurate adjustable output OVP and UVP • SO8 package Features • Low part count. BOM reduction thanks to an extensive features integration • Exceeding 5 stars: No-Load power < 10mW • HV start-up zero power consumption • Advanced burst-mode operation • Flexibility: suitable for adapters from 5W to 65W • High Efficiency • Low EMI design: intelligent jitter for EMI suppression Benefits 28
  28. 28. Quasi-resonant - benefit For Example: Cd = 100pF, f = 60kHz P = 0.75W VD-S Vsw 500V P=0.03W VD-S Vsw 100V P = 0.27W VD-S Vsw Vsw 300V VD-S 𝑃𝐶 𝑙𝑜𝑠𝑠𝑒𝑠 = 1 2 𝑉𝑆𝑊 2 𝐶 𝑑 𝑓 29
  29. 29. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up 30
  30. 30. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up ZCD PIN: Valley detection and output voltage sensing 31
  31. 31. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up ZCD PIN: Valley detection and output voltage sensing GND PIN 32
  32. 32. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up FB PIN: Integrated resistor compensation for CC and CV mode ZCD PIN: Valley detection and output voltage sensing GND PIN 33
  33. 33. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up FB PIN: Integrated resistor compensation for CC and CV mode ZCD PIN: Valley detection and output voltage sensing SENSE PIN: Integrated Leading Edge Blanking time. No low pass filter required GND PIN 34
  34. 34. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up FB PIN: Integrated resistor compensation for CC and CV mode ZCD PIN: Valley detection and output voltage sensing SENSE PIN: Integrated Leading Edge Blanking time. No low pass filter required GD PIN GND PIN 35
  35. 35. STCH03 Quasi Resonant Flyback Controller Pin Connection and Functions HV PIN: 650V embedded HV start-up FB PIN: Integrated resistor compensation for CC and CV mode ZCD PIN: Valley detection and output voltage sensing SENSE PIN: Integrated Leading Edge Blanking time. No low pass filter required GD PIN VDD PIN: Adaptive UVLO threshold GND PIN 36
  36. 36. STCH03 Quasi Resonant Flyback Controller Operating Mode Output characteristic VOUT IOUT CV CC Hiccup mode 37
  37. 37. STCH03 Quasi Resonant Flyback Controller Operating Mode Output characteristic VOUT IOUT CV CC Hiccup mode CV (Constant Voltage Mode) components FB loop via optocoupler 38
  38. 38. STCH03 Quasi Resonant Flyback Controller Operating Mode Output characteristic VOUT IOUT CV CC Hiccup mode CV (Constant Voltage Mode) components FB loop via optocoupler CC (Constant Current Mode) components IOUT = NPRI NSEC Ki 2RSENSE 39
  39. 39. STCH03 Quasi Resonant Flyback Controller Operating Mode Quasi resonant / Multi-mode operation 1/3 VOUT IOUT CV CC Hiccup mode VDS 40
  40. 40. STCH03 Quasi Resonant Flyback Controller Operating Mode Quasi resonant / Multi-mode operation 2/3 VOUT IOUT CV CC Hiccup mode VDS 41
  41. 41. STCH03 Quasi Resonant Flyback Controller Operating Mode Quasi resonant / Multi-mode operation 2/3 VOUT IOUT CV CC Hiccup mode VDS 42
  42. 42. STCH03 Quasi Resonant Flyback Controller Functions and Protections Frequency Jittering VDS JITTERING EFFECT 43
  43. 43. STCH03 Quasi Resonant Flyback Controller Functions and Protections Frequency Jittering Feedforward compensation RZCD = NAUX NPRI LPRIRFF TDRSENSE 44
  44. 44. STCH03 Quasi Resonant Flyback Controller Functions and Protections Overvoltage and Undervoltage Protection Feedforward compensation ROVP = VOVP NAUX NPRI VOUT−OVP − VOVP RZCD 𝑉OUT−UVP = NSEC NAUX (ROVP+RZCD) ROVP VUVP Frequency Jittering 45
  45. 45. STCH03 Quasi Resonant Flyback Controller Functions and Protections Overvoltage and Undervoltage Protection Thermal Shutdown Protection Feedforward compensation Frequency Jittering 46
  46. 46. STCH03 Quasi Resonant Flyback Controller Functions and Protections Overcurrent Protection Frequency Jittering Feedforward compensation Overvoltage and Undervoltage Protection Thermal Shutdown Protection 47
  47. 47. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection VDS VIN Input voltage VINMAX = 265VAC * 1.414 = 380V 48
  48. 48. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection Reflected Voltage VR = nVOUT = D (1 − D) VIN VR = 50 ÷ 200V typically VDS VR VIN VR VR Input voltage VINMAX = 265VAC * 1.414 = 380V 49
  49. 49. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection Reflected Voltage VR = nVOUT = D (1 − D) VIN VR = 50 ÷ 200V typically Leakage inductance spike Limited by clamp circuit VSPIKE = 50 ÷ 200V typically VDS VSPIKE VR VIN VR VR Input voltage VINMAX = 265VAC * 1.414 = 380V 50
  50. 50. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection Reflected Voltage VR = nVOUT = D (1 − D) VIN VR = 50 ÷ 200V typically Leakage inductance spike Limited by peak calm circuit VSPIKE = 50 ÷ 200V typically Margin VMARGIN = 10 ÷ 30% typically VDS VMARGIN VSPIKE VR VIN DRAIN SOURCE BREAKDOWN VOLTAGE VR VR Input voltage VINMAX = 265VAC * 1.414 = 380V 51
  51. 51. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection Reflected Voltage VR = nVOUT = D (1 − D) VIN VR = 50 ÷ 200V typically Leakage inductance spike Limited by peak calm circuit VSPIKE = 50 ÷ 200V typically Margin VMARGIN = 10 ÷ 30% typically VDS VMARGIN VSPIKE VR VIN DRAIN SOURCE BREAKDOWN VOLTAGE VR VR VS VMVRVIN Input voltage VINMAX = 265VAC * 1.414 = 380V SUM #1 380V + 50V + 50V + 100V = 580V M5 650V 52
  52. 52. Offline Auxiliary Power Supply design with STCH03 HV Power Mosfet Selection Reflected Voltage VR = nVOUT = D (1 − D) VIN VR = 50 ÷ 200V typically Leakage inductance spike Limited by peak calm circuit VSPIKE = 50 ÷ 200V typically Margin VMARGIN = 10 ÷ 30% typically VDS VMARGIN VSPIKE VR VIN DRAIN SOURCE BREAKDOWN VOLTAGE VR VR VS VMVRVIN Input voltage VINMAX = 265VAC * 1.414 = 380V SUM #1 380V + 50V + 50V + 100V = 580V #2 380V + 100V + 100V + 200V = 780V M5 650V K5 800V 53
  53. 53. Mosfets - SuperJunction MDmeshTM M5, M2,DM2 & K5 54 • M5: the leading technology for hard switch Key Features • Industry’s one of the lower RDS(on) in the Market • High switching speed • 650V BVdss rated Benefit • highest efficiency in the application • Smaller form factor of final system • Especially targeted for hard switching (PFC, Boost, TTF, Flyback) M6/ M2 / M2 EP: best for LLC Key Features • Up to 30% lower Qg (equivalent die size) • 400 – 700V Bvdss rated • Back-to-Back G-S zener protected Benefit • Reduced switching losses through optimized (Qg) (Ciss, Coss) • Enhanced immunity vs ESD & Vgs spikes in the application • Especially targeted for HB LLC, TTF, Flyback..) • M2 EP Tailored for Very High Frequency Converters (f > 150 kHz) DM2 DM6 Fast Diode: best F/B ZVS Key Features • Integrated fast body diode • Softer commutation behavior • Back-to-Back G-S zener protected Benefit • Reduced switching losses through optimized (Qg) (Ciss, Coss) • High peak diode dV/dt capabilities • Best use in Full Bridge ZVS K5: best in class Very High Volt. Key Features • Extremely good RDS(on) at very high BVDSS • High switching speed • 800-950V BVDSS rated • ted fast body diode Benefit • High efficiency with lower design complexity • Especially targeted for flyback LED topologies and high voltage range in the application STW55NM60N STWxxN60DM2 Products & Applications 54
  54. 54. How to select the right Power MOSFET Maximum Ratings  Represent the extreme capability of the devices  To be used as worst conditions that the design should guarantee will not be exceeded.  Vds, RDS(on), Id, dv/dt (diode), SOA, Rth, package type are some of the most used parameters to identify the right MOSFET . MOSFET (IGBT) Finder App  Selection Guide in PDF  ST WEB page  The new MOSFET Finder App is even smarter and user friendy tool DS is needed to fine tune the rough preliminary selection 55
  55. 55. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side SR Controller 56
  56. 56. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE VOUT VOUT VOUT VR Output Voltage 57
  57. 57. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE VIN/n VOUT VOUT VOUT VR Forwarded Voltage VIN n = VOUT 1 + VIN VR Output Voltage 58
  58. 58. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE VSPIKE VIN/n VOUT VOUT VOUT VR Spike VSPIKE typically negligible Forwarded Voltage VIN n = VOUT 1 + VIN VR Output Voltage 59
  59. 59. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE VMARGIN VSPIKE VIN/n VOUT VOUT VOUT VR BREAKDOWN VOLTAGE Margin VMARGIN = 10 ÷ 30% typically Spike VSPIKE typically negligible Forwarded Voltage VIN n = VOUT 1 + VIN VR Output Voltage 60
  60. 60. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE IFAV VRR M SignalSchottky diodes Power Schottky diodes Field-effect rectifiers SiC diodes Ultrafast bipolar rectifiers VMARGIN VSPIKE VIN/n VOUT VOUT VOUT VR BREAKDOWN VOLTAGE Margin VMARGIN = 10 ÷ 30% typically Spike VSPIKE typically negligible Forwarded Voltage VIN n = VOUT 1 + VIN VR Output Voltage 61
  61. 61. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: DIODE IFAV VRR M SignalSchottky diodes Power Schottky diodes Field-effect rectifiers SiC diodes Ultrafast bipolar rectifiers VMARGIN VSPIKE VIN/n VOUT VOUT VOUT VR BREAKDOWN VOLTAGE Margin VMARGIN = 10 ÷ 30% typically Spike VSPIKE typically negligible Forwarded Voltage VIN n = VOUT 1 + VIN VR VS VMVIN/nVOUT + + + + + + + + + = 36V = 119V = 238V 5V 24V 48V 20V 60V 120V 2V 5V 10V 9V 30V 60V #1 #2 #3 SUM FERD 45V PS 150V UF 300V Output Voltage 62
  62. 62. Diode selection New simple mobile-app to find your diode 63
  63. 63. Synchronous rectification in Flyback
  64. 64. Typical schematics & product mapping Flyback with Schottky diode 85 – 265 Vac Vout PWM controller STPSx40,60,100, FERD Power Schottky & FERD diodes + 65
  65. 65. Typical schematics & product mapping Flyback with Synchronous Rectifier SRK1000 85 – 265 Vac Vout PWM controller SRK1000 SR controller MOSFET 40-120V F7 series MOSFET + 66
  66. 66. SRK1000 • Suitable for Flyback in QR (Quasi Resonant) or DCM/CCM FF (Fixed Frequency) Mode of Operation • High efficiency & low Stand-by • Can Drive Standard Level SR MOSFET • Low consumption mode management • Small Package: SOT23-6 New Synchronous Rectification Controller for Flyback SRK1000* Feedback PWM Controller 67
  67. 67. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: SYNCHRONOUS RECTIFICATION SRK1000 Adaptive SR Controller STCH03 68
  68. 68. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: SYNCHRONOUS RECTIFICATION SRK1000 Adaptive SR Controller STCH03 STripFET F7 Power Mosfet 69
  69. 69. Offline Auxiliary Power Supply design with STCH03 Rectifiers for Secondary Side: SYNCHRONOUS RECTIFICATION VMARGIN VSPIKE VIN/n VOUT VOUT VOUT VDS BREAKDOWN VOLTAGE Margin VMARGIN = 10 ÷ 30% typically Forwarded Voltage VIN n = VOUT 1 + VIN VR VS VMVIN/nVOUT + + + = 80V5V 43V 20V 12V#1 SUM STL90N10F7 STL90N10F7 Output Voltage Leakage inductance spike Limited by peak calm circuit if necessary VSPIKE = 10 ÷ 50V typically 70
  70. 70. SRK1000 & SRK1001 Flyback QR & DCM/CCM FF SRK1000 SRK1001 SRK1000 DVS AMR 100V SOT23-6L SRK1001 DVS AMR 185V SO8 DVS AMR100V 185V production production 71
  71. 71. SRK1000* family Ecosystem • Datasheet  available • Daughter Boards  available • AN  AN5066 BOARD MOSFET PACKAGE Controller EVLSRK1000-TO 100V – 10mW TO220FP SRK1000 EVLSRK1000-DP 100V – 10mW DPAK SRK1000 EVLSRK1000-PF 100V – 8mW PwFlat 5x6 SRK1000 EVLSRK1000-PF3 60V – 6.2mW PwFlat 3.3x3.3 SRK1000 EVLSRK1000A-TO 100V – 10mW TO220FP SRK1000A EVLSRK1000A-PF 100V – 8mW PwFlat 5x6 SRK1000A EVLSRK1000B-TO 100V – 10mW TO220FP SRK1000B EVLSRK1000B-PF 100V – 8mW PwFlat 5x6 SRK1000B 72
  72. 72. Features & Benefit. Extremely Low RDS(on) Low conduction losses Optimized body diode (low Qrr) Excellent switching perfomance Optimal capacitance Crss/Ciss No EMI issue . Extremely low thermal resistance High current capability and Power dissipation Several package solutions Wide product portfolium STripFET F7 series highlight 40V ÷ 120V BVDss LV BU 73
  73. 73. EVLSTCH03-36W-SR 36W USB Power adapter with STCH03 • Universal input mains voltage range: from 90 Vac to 264 Vac • Three fixed Vout available: 5 V, 9 V, 12 V @ 3 A continuous operation • Load power limited to 35 W & 3A out • CV regulation with optocoupler and CC regulation with primary side sensing • Synchronous rectification with SRK1000 • OVP, UVP, OC, short-circuit protections • Compact design: 73x56x18 mm 74
  74. 74. Thermal results With synchronous rectification With Schottky diode MOSFET – 52.4°C PowerFLAT 5x6 Schottky – 112°C PowerFLAT 5x6 Remarks: 23°C ambient, 230Vin, output : 9V; 3.0A; 27W 75
  75. 75. Evaluation Boards
  76. 76. Evaluation boards STEVAL-SMACH15V1 15W board: 35mmx44mm (USB connector included) EVLSTCH03-36W-SR 36W board: 5-9-12V @ 3A STCH03L+SRK1000B 73mmx55mm EVAL-STCH03-45WPD 45W USB TyPe-C PD STCH03+STUSB4761+SRK1001 70mmx50mm Currently under development Covering all chargers and adapters flavors EVAL-STCH03-45W 45W/12V board STCH03+SRK1000B 85mmx55mm Databrief Available STEVAL-USBPD45C 45W USB TyPe-C PD STCH03+STM32F051 73mmx51mm 77
  77. 77. Offline Auxiliary Power Supply design with STCH03
  78. 78. Specifications Actuals view Analysis diagrams A fully annotated and interactive schematic Interactive BOM A full set of commands Customize the Flyback transformer ..never so easy make a SMPS design eDesignSuitehttps://my.st.com/analogsimulator/ 79
  79. 79. Design tips
  80. 80. Transformer tips 81
  81. 81. Transformer tips 82
  82. 82. Layout tips 83
  83. 83. Basic Hints for Lp and n Selection • Main parameters: input voltage range, switching frequency and current limitation. • Set Lp and n for minimum input voltage to use maximum of time slot. • Set Lp to be lower (10 – 15%) than the peak current limit of driving circuit (OCP). • Set n to keep enough margin for the Mosfet. • Set n to keep optimal diode voltage. Viper+ allows to select the max peak current level in fine way Viper+ includes 800V MOSFET = more freedom for designing 84
  84. 84. Input data, basic equitation Design – Input data: 85
  85. 85. DCM x CCM DCM Operation CCM Operation Pin = 9W Pin = 9W Lp=1.68mH Lp=5.0mH Ippk=422mA Ippk=280.5mA Iprms=169mA Iprms=112mA  Higher I2R losses  Lower conduction losses  Bigger input filter for EMI  Smaller input filter for EMI  Bigger output capacitor  Smaller output capacitor  Smaller Transformer  Bigger Transformer  Lower cost secondary side rectifier  Higher cost secondary side rectifier  One pole: easy to compensate  Two poles+RHP zero: instability possible 86
  86. 86. Very useful references AN1262 OFFLINE FLYBACK CONVERTERS DESIGN METHODOLOGY AN1326 L6565 QUASI-RESONANT CONTROLLER 87
  87. 87. Where to buy ST ? 88
  88. 88. Finders app 89
  89. 89. How can I get support ?
  90. 90. OLS- Entre no site www.st.com - Acesse sua conta - uma vez “logado”, siga a sequência abaixo: 91
  91. 91. OLS E então: https://www.st.com/content/st_co m/en/support/support-home.html 92
  92. 92. QA session • Questions -> chat • Gifts  for two best questions : STEVAL-ISA177V1 STEVAL-ISA174V1 93
  93. 93. stmicroelectronics.brasil@st.com 94

×