Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Behaviour Analytics and Visual
Analytics to Improve the
Learning Process
Pedro J. Muñoz-Merino
Universidad Carlos III de M...
Inference of intelligent
information
Image taken from
http://www.datadial.net/blog/index.php/2011/08/24/why-
your-website-...
Example: Skill Modelling
Know if a student has
mastered certain skills
Application of
probabilistic models such as
Item ...
Example: Effectiveness
PJ Muñoz-Merino, JA Ruipérez-Valiente, C Alario-Hoyos,
M Pérez-Sanagustín, C Delgado Kloos:
"Precis...
Example: Emotions
D Leony, PJ Muñoz-Merino, A Pardo, C Delgado Kloos:
“Provision of awareness of learners’ emotions throug...
Example: Gamification
6
Example: Optional
activities
7
𝐿� =
𝑝𝑜���𝑒�� − 𝑝�𝑒�𝑒��
𝑚���𝑐𝑜�𝑒 − 𝑝�𝑒�𝑒��
, 𝑝�𝑒�𝑒�� ≤ 𝑝𝑜���𝑒��
𝑝𝑜���𝑒�� − 𝑝�𝑒�𝑒��
𝑝�𝑒�𝑒��
...
Visualization Systems:
ALAS-KA
JA Ruipérez-Valiente, PJ Muñoz-Merino, D Leony, C Delgado Kloos:
“ALAS-KA: A learning analy...
Visualization Systems:
ANALYSE
Main people involved:
Héctor Pijeira Díaz, Javier Santofimia, Jaime Alzola, Javier
Orcoyen,...
Visualization Systems:
ANALYSE
10
Visualization Systems:
Google Course Builder
11
Visualization Systems:
Affectvis
12
Adaptive learning.
Personalized learning
PJ Muñoz-Merino, C Delgado Kloos, M Muñoz-Organero, A Pardo:
"A Software Engineer...
Adaptive learning.
Personalized learning
PJ Muñoz-Merino, M Fernández Molina, M Muñoz-Organero,
C Delgado Kloos: “An Adapt...
Prediction and
Recommendation Systems
• Prediction about
• Learning gains
• Certificate earners
• Social activity
• Cheati...
Upcoming SlideShare
Loading in …5
×

VII Jornadas eMadrid "Education in exponential times". Mesa redonda eMadrid Learning Analytics. "behaviour analytics and visual analytics to improve the learning process". Pedro Muñoz Merino. 04/07/2017.

78 views

Published on

VII Jornadas eMadrid "Education in exponential times". Mesa redonda eMadrid Learning Analytics. "behaviour analytics and visual analytics to improve the learning process". Pedro Muñoz Merino. 04/07/2017.

Published in: Education
  • Be the first to comment

  • Be the first to like this

VII Jornadas eMadrid "Education in exponential times". Mesa redonda eMadrid Learning Analytics. "behaviour analytics and visual analytics to improve the learning process". Pedro Muñoz Merino. 04/07/2017.

  1. 1. Behaviour Analytics and Visual Analytics to Improve the Learning Process Pedro J. Muñoz-Merino Universidad Carlos III de Madrid Twitter: @pedmume Email: pedmume@it.uc3m.es
  2. 2. Inference of intelligent information Image taken from http://www.datadial.net/blog/index.php/2011/08/24/why- your-website-isnt-as-fast-as-it-should-be/ Learning profiles Behaviours Meta- cognitive skills Emotions Efectiveness Efficiency Interest Gamification interest Machine learningPedagogy Expert Knowled. Semantics 2
  3. 3. Example: Skill Modelling Know if a student has mastered certain skills Application of probabilistic models such as Item Response Theory (IRT), Bayesian Networks (BN), or Knowledge Spaces (KS) and proposal of new techniques 3
  4. 4. Example: Effectiveness PJ Muñoz-Merino, JA Ruipérez-Valiente, C Alario-Hoyos, M Pérez-Sanagustín, C Delgado Kloos: "Precise effectiveness strategy for analyzing the effectiveness of students with educational resources and activities in MOOCs", Computers in Human Behavior, vol. 47, pp. 108–118 (2015) 4
  5. 5. Example: Emotions D Leony, PJ Muñoz-Merino, A Pardo, C Delgado Kloos: “Provision of awareness of learners’ emotions through visualizations in a computer interaction-based environment”, Expert Systems With Applications, vol. 40, no. 3 (2013), pp. 5093- 5100 5
  6. 6. Example: Gamification 6
  7. 7. Example: Optional activities 7 𝐿� = 𝑝𝑜���𝑒�� − 𝑝�𝑒�𝑒�� 𝑚���𝑐𝑜�𝑒 − 𝑝�𝑒�𝑒�� , 𝑝�𝑒�𝑒�� ≤ 𝑝𝑜���𝑒�� 𝑝𝑜���𝑒�� − 𝑝�𝑒�𝑒�� 𝑝�𝑒�𝑒�� , 𝑝�𝑒�𝑒�� > 𝑝𝑜���𝑒�� Pearson Correlation. Learning gain sig. (2-tailed) N = 69 Optional activities: 0.293** (p=0.015) Goal: 0.102 (p=0.406) Feedback: 0.219 (p=0.071) Vote: 0.333* (p=0.005) Avatar: 0.221 (p=0.068) Display badges: 0.296** (p=0.013) ***Partial Correlation. Learning gain sig. (2-tailed) N = 69 Optional activities: 0.142 (p=0.260) Goal: - 0.070 (p=0.581) Feedback: 0.124 (p=0.323) Vote: 0.214 (p=0.087) Avatar: 0.170 (p=0.176) Display badges: 0.261 (p=0.036) • Students completed their goals they set in more than 50% of the times • Students voted their peers in a positive manner • Gender and type of course had an influence on which optional activities were used
  8. 8. Visualization Systems: ALAS-KA JA Ruipérez-Valiente, PJ Muñoz-Merino, D Leony, C Delgado Kloos: “ALAS-KA: A learning analytics extension for better understanding the learning process in the Khan Academy platform”, Computers in Human Behavior, 47 (2015), 139-148 8
  9. 9. Visualization Systems: ANALYSE Main people involved: Héctor Pijeira Díaz, Javier Santofimia, Jaime Alzola, Javier Orcoyen, José A. Gascón Pinedo, José A. Ruipérez Valiente, Pedro J. Muñoz-Merino, Carlos Delgado Kloos 9
  10. 10. Visualization Systems: ANALYSE 10
  11. 11. Visualization Systems: Google Course Builder 11
  12. 12. Visualization Systems: Affectvis 12
  13. 13. Adaptive learning. Personalized learning PJ Muñoz-Merino, C Delgado Kloos, M Muñoz-Organero, A Pardo: "A Software Engineering Model for the Development of Adaptation Rules and its Application in a Hinting Adaptive E-learning System", Computer Science and Information Systems, 12:1, 203-231(2015) 13
  14. 14. Adaptive learning. Personalized learning PJ Muñoz-Merino, M Fernández Molina, M Muñoz-Organero, C Delgado Kloos: “An Adaptive and Innovative Question-driven Competition-based Intelligent Tutoring System for Learning”, Expert Systems with Applications, 39:8 (2012), 6932-6948 14
  15. 15. Prediction and Recommendation Systems • Prediction about • Learning gains • Certificate earners • Social activity • Cheating • System behaviours • Recommenders about • Resources • Users 15

×