Upcoming SlideShare
×

# Physics (praktikum)

2,855 views

Published on

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
2,855
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
4
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Physics (praktikum)

1. 1. DATA TABLE 1 Period Frequency Trial 1 Trial 2 Trial 3 average (s/cicle) (cicle/s) Length 1 10 11 11 10.7 1.07 (10 cm) Leght 2 9 9 9 9 1.09I (20 cm) Leght 3 8 8 9 8.3 1.28 0.83 (30 cm) Mass 9 8 8 8.3 0.83 (50 gr) Mass 7 8 8 7.6 1.25I (100 gr) Mass 7 8 8 7.6 1.30 0.76I (125 gr) Amplitude 8 8 8 8 0.80 (20°) Amplitude 8 8 8 8 1.25I (40°) Amplitude 8 7 7 7.3 1.27 0.73I (60°) DATA TABLE 2I Period Length of Trial 1 Trial 2 Trial 3 average g (s/cicle) string (m) Length 1 10 11 11 10.7 0.92 0.10 Length 2 9 9 9 9 0.11 0.20 Length 3 8 8 9 8.3 1.29 0.30 Note : I : mass = 50 grams, angle = 300 II : length = 30 cm, angle = 300 III : mass = 50 grams, length = 30 cm ANALYZE 1. Summarize. What is the relationship between the pendulum’s amplitude and its period? The answer : if the pendulums amplitude is bigger, it makes the period is also bigger. 2. Summarize. What is the relationship between the pendulum’s bob mass and its period? The answer : if the pendulum’s bob mass is bigger, it makes the period is smaller 3. Compare and Contrast. How are the period and length of a pendulum related?
2. 2. The answer : the period is influenced by increasing of length too. It is proved on our investigation, the result is if pendulum’s length is longer, will make the period is bigger4. Determine g (the acceleration due to gravity using the question T= 2 l/g). Length 1 : - T= 0.92 - l= 0.10 m The resolution is : T= 2 l/g 0.92 = 2 x 3.14 /g 2 (5.78 )2 = ( /g) 33.4084 = 0.10/g g = 0.00299 length 2 : - T = 0.11 - l = 0.20 The resolution is : T= 2 l/g 0.11 = 2 x 3.14 /g (5.78 )2 = /g)2 33.4084 = 0.20/g g = 0.00598 length 3 : - T = 1.29 - l = 0.30 The resolution is : T= 2 l/g 1.29 = 2 x 3.14 /g (5.78 )2 = /g)2
3. 3. 33.4084 = 0.30/g g = 0.00895. Error Analiysis Pendulums are affected by changes in gravitational acceleration, which varies by as much as 0.5% at different locations on Earth, so pendulum clocks have to be recalibrated after a move. Even moving a pendulum clock to the top of a tall building can cause it to lose measurable time from the reduction in gravity. CONCLUDE AND APPLY1. Infer. What variable(s) effects a pendulum’s period? The answer : there are main possible variable that affect the period. There are the length, amplitude, and mass of pendulum.2. Analyze. why is better to run three or more trials to obtain the frequency and period of each pendulum? The answer : because if we want to get the valid data, we must do the experiment more than three times, then we must find the average of the data.3. Compare. How is the motion of pendulum like that of a wave? The answer : Pendulum moving back and forth around or past the point of balance and the end of the rope (that have vibrates) at a pendulum which resulted in a wave propagating.4. Analyze and conclude. When does the pendulum bob have the greats kinetic energy?
4. 4. The answer : The pendulum bob have the greats kinetic energy when the pendulum in the the lowest point or in the equilibrium point.5. Analyze and conclude. When does the pendulum bob have the greats potential energy? The answer : The pendulum bob have the greats potential energy when the pendulum in the he highest point and the velocity is 0 (stops for a moment)GOING FUTHERSuppose you had a very long pendulum. What other observation could be made, over the periodof a day, of this pendulums motion?1. Schuler tuning2. Seismometers3. Pendulum’s o’clockREAL WORLD PHYSICSPendulum are used to drive some types of clocks. using the observation from your experiment,what design problems are there in using your pendulum as a time-keeping instrument?From our experiment, we can conclude that the pendulum only can as a time-keeping instrumentif the motion is constant. We can say “constant” if the angle of pendulum is same, the velocity isalso same, and then the pendulum is not moving-circle