Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

MC100LVEP34 Clock Generation Chip

487 views

Published on

An Introduction to 2.5V / 3.3V ECL ÷2, ÷4, ÷8 Clock Generation Chip

  • Be the first to comment

MC100LVEP34 Clock Generation Chip

  1. 1. MC100LVEP34 Clock Generation Chip <ul><li>Source: ON Semiconductor </li></ul>
  2. 2. Introduction <ul><li>Purpose </li></ul><ul><ul><li>An Introduction to 2.5V / 3.3V ECL ÷2, ÷4, ÷8 Clock Generation Chip </li></ul></ul><ul><li>Outline </li></ul><ul><ul><li>Features </li></ul></ul><ul><ul><li>Logic Diagram </li></ul></ul><ul><ul><li>Timing diagram, Reset recovery time </li></ul></ul><ul><ul><li>Duty cycle skew, output-output skew </li></ul></ul><ul><ul><li>Clock Distribution Tree. </li></ul></ul><ul><li>Content </li></ul><ul><ul><li>12 pages. </li></ul></ul>
  3. 3. Features <ul><li>35 ps Output-to-Output Skew </li></ul><ul><li>Synchronous Enable/Disable </li></ul><ul><li>Master Reset for Synchronization </li></ul><ul><li>The 100 Series Contains Temperature Compensation. </li></ul><ul><li>PECL Mode Operating Range: VCC = 2.375 V to 3.8 V </li></ul><ul><li>with VEE = 0 V </li></ul><ul><li>NECL Mode Operating Range: VCC = 0 V with VEE = -2.375 V to -3.8 V </li></ul><ul><li>Open Input Default State </li></ul><ul><li>LVDS Input Compatible </li></ul><ul><li>Pb-Free Packages are Available </li></ul>
  4. 4. Logic Diagram
  5. 5. Timing Diagrams If the MR is de-asserted (H-L), while the Clock is still high, the outputs will follow the second ensuing clock rising edge
  6. 6. Timing Diagrams If the MR is de-asserted (H-L), after the Clock has transitioned low, the outputs will follow the third ensuing clock rising edge.
  7. 7. Reset Recovery Time CASE 1 CASE 2
  8. 8. Typical Termination for Output Driver Typical Termination for Output Driver
  9. 9. Duty Cycle Skew <ul><li>The duty cycle skew is a measure of the difference between the TPLH and TPHL propagation delays </li></ul><ul><li>Differences in TPLH and TPHL will result in pulse width distortion the duty cycle skew is sometimes referred to as pulse skew. </li></ul><ul><li>Duty cycle skew is important in applications where timing operations occur on both edges or when the duty cycle of the clock signal is critical. </li></ul>
  10. 10. Output-to-Output Skew <ul><li>Output-to-output skew is defined as the difference between the propagation delays of all the outputs of a device. </li></ul><ul><li>Typically the output-to-output skew will be smaller than the duty cycle skew for TTL and CMOS devices </li></ul><ul><li>The output-to-output skew is important in systems where either a single device can provide all of the necessary clocks or for the first level device of a nested clock distribution tree. </li></ul>
  11. 11. ECL Clock Distribution Tree <ul><li>Here we illustrates a two level clock distribution tree which produces nine differential ECL clocks on six different cards. </li></ul><ul><li>The ECLinPS E211 device gives the flexibility of disabling each of the cards individually </li></ul><ul><li>The device also provides a muxed clock input for incorporating a high speed system clock and a lower speed test or scan clock within the same distribution tree. </li></ul>
  12. 12. Additional Resource <ul><li>For ordering MC100LVEP34, please click the part list or </li></ul><ul><li>Call our sales hotline </li></ul><ul><li>For more product information go to </li></ul><ul><ul><li>http://www.onsemi.com/PowerSolutions/product.do?id=MC100LVEP34 </li></ul></ul><ul><li>For additional inquires contact our technical service hotline or even use our “Live Technical Chat” online facility </li></ul>

×