Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
High Speed Amplifiers Part 1 <ul><li>Source: Analog Devices  </li></ul>
Introduction <ul><li>Purpose </li></ul><ul><ul><li>This training module introduces the basic knowledge of high speed opera...
How to Classify High Speed Amplifiers?  <ul><li>High Speed Amplifiers  </li></ul><ul><ul><li>Have Bandwidths > 50MHz </li>...
Typical High Speed Amplifier Specifications <ul><li>Bandwidth: 50MHz to 2.1GHz </li></ul><ul><li>Slew Rate: 30V/ µ sec to ...
Voltage Feedback (VFB) OP-AMP Model ~ + – v – A(s) v A(s) = OPEN LOOP GAIN R2 R1 V OUT V IN V OUT V IN 1  +  R2 R1 1  +  1...
Gain-Bandwidth Product for Voltage Feedback OP AMPS GAIN dB OPEN LOOP GAIN, A(s) IF GAIN BANDWIDTH PRODUCT = X THEN Y  ·  ...
Current Feedback (CFB) OP AMP Model + – i – T(s) i T(s) = TRANSIMPEDANCE OPEN LOOP GAIN T(s) R O i ×1 R2 R1 V IN V OUT V O...
Frequency Response for Current Feedback OP AMPS <ul><li>Feedback resistor fixed for optimum performance. Larger values red...
Simplified Current Feedback (CFB) OP AMP
CFB OP AMP Model and Bode Plot
Differential Amplifier with Folded Cascode Simplified Circuit
Model and Bode Plot for a VFB OP AMP
ADI’s Amplifier Architectures Differential Pair “ H” Bridge Common Mode Linearized Low Noise  Medium Noise  Low Noise Low ...
Differential Pair, Noise *add RSS for total noise Vn Vcc Vee 2*Ic Rd Rd Ru Ru Rb Rb Q1 Q2 Q4 Q3 Qm Qm Vp 1 Vo C Vb + - Vb ...
&quot;QUAD-CORE” or H-BRIDGE VFB gm Stage or  CURRENT-ON-DEMAND
H-Bridge Noise Main Noise Contributors Qi&Qo4 => Rh’s => Rc => Rm’s =>  Much Higher Slew Rate +1 Qo’s Qi Rh Rh Rh Rh Rc Qo...
Common Mode Linearized Input  Stage Vo +1 A A Ib It It Vp Vn Vb1 Vb2 Rmt Rmt Rmb Rmb Main Noise Terms Qi’s=> R’s=> Ic AIc ...
Noise Gain and Signal Gain Comparison
Raising Noise Gain (DC or AC)  for Follower (A) or Inverter (B) Stability
Noise Gain Stability Analysis for VFB and CFB Op Amps with Feedback Capacitor
Current “Noise Gain” Definition for CFB OP AMP for Use in Stability Analysis
OP AMP Noise Model for A  First-Order Circuit with Resistive Feedback
Referring All Noise Sources to the Output
AD8011 Output Noise Analysis /  H z 4 n V /  H z 5 p A /  H z 4 n V /  H z AD 80 11 5 p A /  H z 0 . 9 n V /  H z 2 ...
AD8011 Noise Figure for Unterminated  and Terminated Input Conditions   Unterminated 50  1k  1k  + – R S V no(total)  =...
High Speed OP AMP Noise Summary <ul><li>Voltage Feedback Op Amps: </li></ul><ul><ul><li>Voltage Noise: 2 to 20nV/  Hz </l...
Model for Calculating Total Op Amp Output Voltage Offset V O  = ±V OS  1 +  + I b+ R3  1 +  - I b- R2 IF I b+ = I b- AND R...
Output Offset Voltage Summary <ul><li>High Speed Bipolar Op Amp Input Offset Voltage:  </li></ul><ul><ul><li>Ranges from 0...
External Load Capacitance to An OP AMP Output Capacitive loading on op amp generally reduces phase margin and may cause in...
Open-loop Series Resistance Isolates Capacitive Load for AD811 Current Feedback Op Amp 6 7 4 3 2 - + A D 8 1 1 R I N 30. 9...
Compensating For Input Capacitance  in a Current-to-voltage Converter Using  VFB OP AMP
Generalized Model for High Speed Photodiode Preamp C2 R2 C1 I + _ 1 f 2 f 1 f u f NOISE GAIN OPEN LOOP GAIN UNCOMPENSATED ...
Additional Resource <ul><li>For ordering high speed operational amplifiers, please click the part list or </li></ul><ul><l...
Upcoming SlideShare
Loading in …5
×

High Speed Amplifiers Part 1

2,030 views

Published on

This training module introduces the basic knowledge of high speed operational amplifiers and some characteristics

Published in: Technology
  • Be the first to comment

High Speed Amplifiers Part 1

  1. 1. High Speed Amplifiers Part 1 <ul><li>Source: Analog Devices </li></ul>
  2. 2. Introduction <ul><li>Purpose </li></ul><ul><ul><li>This training module introduces the basic knowledge of high speed operational amplifiers and some characteristics. </li></ul></ul><ul><li>Outline </li></ul><ul><ul><li>High Speed Amplifiers Defined </li></ul></ul><ul><ul><li>Architectures </li></ul></ul><ul><ul><li>Noise Gain vs. Signal Gain </li></ul></ul><ul><ul><li>Noise Analysis </li></ul></ul><ul><ul><li>Voltage Offset </li></ul></ul><ul><ul><li>Driving Capacitive Loads </li></ul></ul><ul><ul><li>Compensating for Input Capacitance </li></ul></ul><ul><li>Content </li></ul><ul><ul><li>33 pages </li></ul></ul>
  3. 3. How to Classify High Speed Amplifiers? <ul><li>High Speed Amplifiers </li></ul><ul><ul><li>Have Bandwidths > 50MHz </li></ul></ul><ul><ul><li>AC specification driven </li></ul></ul><ul><ul><ul><li>Wide bandwidths </li></ul></ul></ul><ul><ul><ul><li>High slew rates </li></ul></ul></ul><ul><ul><ul><li>Fast settling time </li></ul></ul></ul><ul><li>Precision Amplifiers </li></ul><ul><ul><li>BW < 50MHz </li></ul></ul><ul><ul><li>Offset voltage < 1mV </li></ul></ul><ul><ul><li>Low drift </li></ul></ul><ul><li>HS AMPs Applications: Communications, video, medical imaging, commercial imaging, consumer electronics, industrial and data acquisition </li></ul>
  4. 4. Typical High Speed Amplifier Specifications <ul><li>Bandwidth: 50MHz to 2.1GHz </li></ul><ul><li>Slew Rate: 30V/ µ sec to 5500V/ µ sec </li></ul><ul><li>Settling Time: 1 µ sec to 4nsec </li></ul>
  5. 5. Voltage Feedback (VFB) OP-AMP Model ~ + – v – A(s) v A(s) = OPEN LOOP GAIN R2 R1 V OUT V IN V OUT V IN 1 + R2 R1 1 + 1 A(s) 1 + R2 R1 = 1 + R2 R1 1 + 1 A(s) β =
  6. 6. Gain-Bandwidth Product for Voltage Feedback OP AMPS GAIN dB OPEN LOOP GAIN, A(s) IF GAIN BANDWIDTH PRODUCT = X THEN Y · f CL = X f CL = X Y WHERE f CL = CLOSED-LOOP BANDWIDTH LOG f f CL NOISE GAIN = Y Y = 1 + R2 R1
  7. 7. Current Feedback (CFB) OP AMP Model + – i – T(s) i T(s) = TRANSIMPEDANCE OPEN LOOP GAIN T(s) R O i ×1 R2 R1 V IN V OUT V OUT V IN 1 + R2 R1 1 + R2 T(s) 1 + R O = 1 + R2 R1 1 + R2 T(s)  R1 + R O R2 ASSUME R O << R1, AND R1  R2, THEN V OUT V IN ×1
  8. 8. Frequency Response for Current Feedback OP AMPS <ul><li>Feedback resistor fixed for optimum performance. Larger values reduce bandwidth, smaller values may cause instability. </li></ul><ul><li>For fixed feedback resistor, changing gain has little effect on bandwidth. </li></ul><ul><li>Current feedback op amps do not have a fixed gain-bandwidth product. </li></ul>GAIN dB G1 G2 G1 · f 1 G2 · f 2 f 1 f 2 <ul><ul><li>LOG f </li></ul></ul>
  9. 9. Simplified Current Feedback (CFB) OP AMP
  10. 10. CFB OP AMP Model and Bode Plot
  11. 11. Differential Amplifier with Folded Cascode Simplified Circuit
  12. 12. Model and Bode Plot for a VFB OP AMP
  13. 13. ADI’s Amplifier Architectures Differential Pair “ H” Bridge Common Mode Linearized Low Noise Medium Noise Low Noise Low Slew Rate High Slew Rate High Slew Rate AD8021 AD8057 AD8099 ADA4899
  14. 14. Differential Pair, Noise *add RSS for total noise Vn Vcc Vee 2*Ic Rd Rd Ru Ru Rb Rb Q1 Q2 Q4 Q3 Qm Qm Vp 1 Vo C Vb + - Vb + - Vu + - Note: Main Noise Terms* Q1&2 => Ru => Rb => Rd =>
  15. 15. &quot;QUAD-CORE” or H-BRIDGE VFB gm Stage or CURRENT-ON-DEMAND
  16. 16. H-Bridge Noise Main Noise Contributors Qi&Qo4 => Rh’s => Rc => Rm’s => Much Higher Slew Rate +1 Qo’s Qi Rh Rh Rh Rh Rc Qo’s Rm Rm Rm Rm Qi Qi Qi
  17. 17. Common Mode Linearized Input Stage Vo +1 A A Ib It It Vp Vn Vb1 Vb2 Rmt Rmt Rmb Rmb Main Noise Terms Qi’s=> R’s=> Ic AIc Ic Note: Greatly Improves Slew Without Degrading Noise! Qi_n Qi_p Qi_n Qi_p
  18. 18. Noise Gain and Signal Gain Comparison
  19. 19. Raising Noise Gain (DC or AC) for Follower (A) or Inverter (B) Stability
  20. 20. Noise Gain Stability Analysis for VFB and CFB Op Amps with Feedback Capacitor
  21. 21. Current “Noise Gain” Definition for CFB OP AMP for Use in Stability Analysis
  22. 22. OP AMP Noise Model for A First-Order Circuit with Resistive Feedback
  23. 23. Referring All Noise Sources to the Output
  24. 24. AD8011 Output Noise Analysis /  H z 4 n V /  H z 5 p A /  H z 4 n V /  H z AD 80 11 5 p A /  H z 0 . 9 n V /  H z 2 n V /  H z R1 1 k  R2 1 k  (G • R S ) (G ) ( 1 ) (R 2) (- R 2/ R 1) G = 1 + R2 R1 (G ) + - R S 5 0  f CL = 180MHz 1 . 8 n V /  H z 0 . 5 n V /  H z 4 n V /  H z 4 n V /  H z 5 n V /  H z 4 n V OUT PUT NO ISE SP ECTRAL DENS ITY = 8.7nV/  Hz TOTAL NOISE = 8.7  1.57 X 180 X 10 6 = 146  V rms
  25. 25. AD8011 Noise Figure for Unterminated and Terminated Input Conditions Unterminated 50  1k  1k  + – R S V no(total) = 8.7nV /  Hz, from previous slide V no(Rs) = G = 2 4kTR G 4kTR 0.9nV/  Hz = 1.8nV/  Hz NF = 20 log 8.7 1.8 = 13.7 dB 50  1k  1k  + – R S V no(total)  8.7nV /  Hz (See Note) V no(Rs) = G = 2 4kTR G kTR 0.9nV/  Hz = 0.9nV/  Hz NF = 20 log 8.7 0.9 = 19.7 dB 50  Note: Input noise current (I n+ ) flows through 50  (unterminated case) or 25  (terminated case), but the overall effect of this is negligible. I n+ I n+ Terminated AD8011 AD8011
  26. 26. High Speed OP AMP Noise Summary <ul><li>Voltage Feedback Op Amps: </li></ul><ul><ul><li>Voltage Noise: 2 to 20nV/  Hz </li></ul></ul><ul><ul><li>Current Noise: 0.5 to 5pA/  Hz </li></ul></ul><ul><li>Current Feedback Op Amps: </li></ul><ul><ul><li>Voltage Noise: 1 to 5nV/  Hz </li></ul></ul><ul><ul><li>Current Noise: 5 to 40pA/  Hz </li></ul></ul><ul><li>Noise Contribution from Source Negligible if < 100  </li></ul><ul><li>Voltage Noise Usually Dominates at High Gains </li></ul><ul><li>Reflect Noise Sources to Output and Combine Root Sum Squared (RSS) </li></ul><ul><li>Errors Will Result if there is Significant High Frequency Peaking </li></ul>
  27. 27. Model for Calculating Total Op Amp Output Voltage Offset V O = ±V OS 1 + + I b+ R3 1 + - I b- R2 IF I b+ = I b- AND R3 = R1||R2 V O = ±V OS 1 + I b - V OS + - R3 R2 R1 R2 R1 I b+ R2 R1 R2 R1 V O
  28. 28. Output Offset Voltage Summary <ul><li>High Speed Bipolar Op Amp Input Offset Voltage: </li></ul><ul><ul><li>Ranges from 0.1mV to 3mV for VFB and CFB </li></ul></ul><ul><ul><li>Offset TC Ranges from 5 to 15µV/°C </li></ul></ul><ul><li>High Speed Bipolar Op Amp Input Bias Current: </li></ul><ul><ul><li>For VFB Ranges from 0.1 to 5µA </li></ul></ul><ul><ul><li>For CFB Ranges from 5 to 15µA </li></ul></ul><ul><li>Bias Current Cancellation Doesn't Work for: </li></ul><ul><ul><li>Bias Current Compensated Op Amps </li></ul></ul><ul><ul><li>Current Feedback Op Amps </li></ul></ul>
  29. 29. External Load Capacitance to An OP AMP Output Capacitive loading on op amp generally reduces phase margin and may cause instability, but increasing the noise gain of the circuit improves stability.
  30. 30. Open-loop Series Resistance Isolates Capacitive Load for AD811 Current Feedback Op Amp 6 7 4 3 2 - + A D 8 1 1 R I N 30. 9k  R F 750  R X 1 2  R L 500  V OUT C L 1n F 0.1  F +1 2V -1 2V 100  F/ 2 5V 100  F/ 2 5V 0.1  F R B 1 k  V IN
  31. 31. Compensating For Input Capacitance in a Current-to-voltage Converter Using VFB OP AMP
  32. 32. Generalized Model for High Speed Photodiode Preamp C2 R2 C1 I + _ 1 f 2 f 1 f u f NOISE GAIN OPEN LOOP GAIN UNCOMPENSATED COMPENSATED f 1 = f 2 = f 2 = f 1 • f u C2 = 1 2  R2 C1 1 2  R2 C2 C1 2  R2 f u FOR 45° PHASE MARGIN GAIN f u = OP AMP UNITY GAIN BW PRODUCT f 2 = SIGNAL BW f u Total Input Capacitance f 2 = f u 2  R2 C1 – V B
  33. 33. Additional Resource <ul><li>For ordering high speed operational amplifiers, please click the part list or </li></ul><ul><li>Call our sales hotline </li></ul><ul><li>For additional inquires contact our technical service hotline </li></ul><ul><li>For more product information go to </li></ul><ul><ul><li>http://www.analog.com/en/amplifiers-and-comparators/operational-amplifiers-op-amps/products/index.html </li></ul></ul>Newark Farnell

×