Robust Land Use Characterization of Urban Landscapes using Cell Phone Data

793 views

Published on

First Workshop on Pervasive Urban Applications in conjuntion with 9th Int. Conf. on Pervasive Computing, San Francisco, CA, 2011

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
793
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Robust Land Use Characterization of Urban Landscapes using Cell Phone Data

  1. 1. <ul><li>Robust Land Use Characterization
  2. 2. of Urban Landscapes using Cell Phone Data </li></ul><ul>June 12, 2011 </ul><ul>Víctor Soto & Enrique Frías-Martínez </ul><ul>TELEFÓNICA I+D </ul>
  3. 3. <ul></ul><ul>Introduction </ul><ul>01 </ul><ul>Telefónica I+D </ul>
  4. 4. <ul><li>Goal: Land use of urban areas using Call Details Records. </li></ul><ul></ul>
  5. 5. <ul></ul><ul>Preliminaries </ul><ul>02 </ul><ul>Telefónica I+D </ul>
  6. 6. <ul>Cell Phone Network </ul><ul><li>Cell Phone networks are built using Base Transceiver Stations (BTS).
  7. 7. Each BTS will be characterized by a feature vector that describes the calling behavior area. </li></ul><ul></ul>
  8. 8. <ul>CDR dataset </ul><ul><li>Our Dataset </li></ul><ul><ul><li>1 month of phone call interactions.
  9. 9. 1100 Base Transceiver Stations.
  10. 10. Each CDR contains: </li><ul><li>phone Source | phone Destiny | bts Source | bts Destiny | DD/MM/YYYY | hh:mm:ss | d </li></ul><li>Phone number are encrypted to anonymize user identities. </li></ul></ul><ul></ul>
  11. 11. <ul></ul><ul>Activity Signature </ul><ul>03 </ul><ul>Telefónica I+D </ul>
  12. 12. <ul>Representations </ul><ul><li>Activity signature vectors are built: each component contains the number of managed calls by the BTS in 5-minute intervals. </li></ul><ul></ul>
  13. 13. <ul></ul><ul>Land Use Identification </ul><ul>04 </ul><ul>Telefónica I+D </ul>
  14. 14. <ul></ul>
  15. 15. <ul>Methodology (I) </ul><ul><li>Detect the number of fuzzy clusters c in the signatures dataset using subtractive clustering. </li></ul><ul></ul>
  16. 16. <ul></ul>
  17. 17. <ul></ul><ul>Robust Land Use Analysis </ul><ul>05 </ul><ul>Telefónica I+D </ul>
  18. 18. <ul>Why Robust Land Usage? </ul><ul><li>Land uses in urban landscapes are not well defined </li></ul><ul><ul><li>One lot can show several land uses at different degrees.
  19. 19. Often real and planned land uses won't match. </li></ul></ul><ul><li>The key: </li></ul><ul><ul><li>Fuzzy c-means returns the membership degree of each object to the class representatives. These membership indices can be used to filter robust land uses. </li></ul></ul><ul></ul>
  20. 20. <ul>Filtering process </ul><ul></ul>
  21. 21. <ul>Filtering process </ul><ul></ul>
  22. 22. <ul></ul><ul>Validation </ul><ul>06 </ul><ul>Telefónica I+D </ul>
  23. 23. <ul></ul>
  24. 24. <ul>Cluster 1: Industrial & Office </ul><ul></ul>
  25. 25. <ul>Cluster 2: Business & Commercial </ul><ul></ul>
  26. 26. <ul>Cluster 3: Nightlife </ul><ul></ul>
  27. 27. <ul>Cluster 4: Leisure & Transport </ul><ul></ul>
  28. 28. <ul>Cluster 5: Residential </ul><ul></ul>
  29. 29. <ul></ul><ul>Conclusions & Future Work </ul><ul>07 </ul><ul>Telefónica I+D </ul>
  30. 30. <ul><li>Specific uses for City Halls. </li></ul><ul></ul>
  31. 31. Questions?

×